CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1520-1527.DOI: 10.11949/0438-1157.20191359
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Fengguo TIAN(),Tian ZHU,Dezheng KONG,Ming LEI
Received:
2019-11-11
Revised:
2020-01-06
Online:
2020-04-05
Published:
2020-04-05
Contact:
Fengguo TIAN
通讯作者:
田凤国
作者简介:
田凤国(1977—),男,博士,讲师,基金资助:
CLC Number:
Fengguo TIAN, Tian ZHU, Dezheng KONG, Ming LEI. Residence time of large particles in fluidized beds with non-uniform gas introducing[J]. CIESC Journal, 2020, 71(4): 1520-1527.
田凤国, 朱田, 孔德正, 雷鸣. 非均匀布风流化床内大颗粒停留时间特性[J]. 化工学报, 2020, 71(4): 1520-1527.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 RTD test rig of internally circulating fluidized bed1—fluidized bed; 2—feeding port; 3—flowmeter; 4—bypass; 5—valve; 6—gas header; 7—wind box for low-gas-flow-rate-zone; 8—wind box for high-gas-flow-rate-zone; 9—discharging tube; 10—electronic balance
床料 | 平均粒径/mm | 堆积密度/ (kg/m3) | 真实密度/ (kg/m3) | 临界流化 风速/(m/s) |
---|---|---|---|---|
树脂 | 0.65 | 740 | 1200 | 0.186 |
Table 1 Physical parameters of bed material
床料 | 平均粒径/mm | 堆积密度/ (kg/m3) | 真实密度/ (kg/m3) | 临界流化 风速/(m/s) |
---|---|---|---|---|
树脂 | 0.65 | 740 | 1200 | 0.186 |
种类 | 颗粒密度/(kg/m3) | 颗粒尺寸/mm | 临界排出风速/(m/s) |
---|---|---|---|
煤粒 | 1860 | 4.5 | 8.78 |
绿豆 | 1360 | 3.8 | 9.51 |
黄豆 | 1280 | 6.5 | 10.24 |
玻璃 | 2500 | 5×5×5 | 12.32 |
灰渣 | 2200 | 12 | 15.77 |
Table 2 Physical parameters of large particles
种类 | 颗粒密度/(kg/m3) | 颗粒尺寸/mm | 临界排出风速/(m/s) |
---|---|---|---|
煤粒 | 1860 | 4.5 | 8.78 |
绿豆 | 1360 | 3.8 | 9.51 |
黄豆 | 1280 | 6.5 | 10.24 |
玻璃 | 2500 | 5×5×5 | 12.32 |
灰渣 | 2200 | 12 | 15.77 |
9 | 刘典福, 孙雍春, 周超群. 非均匀布风内循环流化床中气泡特性的可视化研究[J]. 动力工程学报, 2019, 39(1): 1-6. |
Liu D F, Sun Y C, Zhou C Q. Visualized research on bubbling characteristics in an internally circulating fluidized bed with uneven air distribution[J]. Journal of Chinese Society of Power Engineering, 2019, 39(1): 1-6. | |
10 | 田文栋, 魏小林, 黎军, 等. 非均匀和均匀布风流化床中颗粒的运动分析[J]. 工程热物理学报, 2001, 22(Suppl.): 160-163. |
Tian W D, Wei X L, Li J, et al. An investigation of particle movement in fluidized bed with uneven and even arrangements of distribution air[J]. Journal of Engineering Thermophysics, 2001, 22(Suppl.): 160-163. | |
11 | Tian F G, Zhang M C, Fan H J, et al. Numerical study on microscopic mixing characteristics in fluidized beds via DEM[J]. Fuel Processing Technology, 2007, 88: 187-198. |
12 | 尹斌, 章明川, 唐春捷, 等. 内循环流化床气泡运动特性的可视化研究[J]. 动力工程, 2003, 23(1): 2143- 2145. |
Yin B, Zhang M C, Tang C J, et al. Visualized research on movement characteristics of bubbles in an internally circulating fluidized bed[J]. Power Engineering, 2003, 23 (1): 2143-2145. | |
13 | Zhang Y, Jin B S, Zhong W Q.Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(3): 745-754. |
14 | Khongprom P, Aimdilokwong A, Limtrakul S, et al. Axial gas and solids mixing in a down flow circulating fluidized bed reactor based on CFD simulation[J]. Chemical Engineering Science, 2012, 73: 8-19. |
15 | Lan X Y, Shi X G, Zhang Y H, et al. Solids back-mixing behavior and effect of the mesoscale structure in CFB risers[J]. Industry &. Engineering Chemistry Research, 2013, 52: 11888-11896. |
16 | Cano-Pleite E, Hernández-Jiménez F, Garcia-Gutierrez L M. Experimental study on the motion of solids around an isolated bubble rising in a vertically vibrated fluidized bed[J]. Chemical Engineering Journal, 2017, 330: 120-133. |
17 | Wiese J, Becker M, Yorath G, et al. An investigation into the relationship between particle shape and entrainment[J]. Minerals Engineering, 2015, 83: 211-216. |
1 | 李天涛, 郭飞强, 王岩, 等. 微型流化床内松木屑和煤泥等温混合热解特性[J]. 化工学报, 2017, 68(10): 3923- 3933. |
Li T T, Guo F Q, Wang Y, et al. Characterization of co-pyrolysis of pine sawdust and coal slime under isothermal conditions in micro fluidized bed reactor[J]. CIESC Journal, 2017, 68(10): 3923-3933. | |
18 | Weinell C E, Dam-Johansen K, Johnsson J E. Single-particle behaviour in circulating fluidized beds[J]. Powder Technology, 1997, 92: 241-252. |
19 | Sanderson J, Rhodes M J. Hydrodynamic similarity of solids motion and mixing in bubbling fluidized beds[J]. AIChE Journal, 2003, 49: 2317-2327. |
20 | 李峰. 异形大颗粒在流化床内运动规律实验研究及数值模拟[D]. 重庆: 重庆大学, 2017. |
Li F. Experimental and computational study on the motion behavior of special-shape large particles in a fluidized bed[D]. Chongqing: Chongqing University, 2017. | |
21 | 田凤国, 章明川, 范浩杰, 等. 内循环流化床大块物分布特性的试验研究[J]. 动力工程, 2005, 25(6): 68-72. |
Tian F G, Zhang M C, Fan H J, et al. Distribution of lumped matter in internally circulating fluidized bed boilers[J]. Power Engineering, 2005, 25(6): 68-72. | |
22 | Yin B, Zhang M C, Tang C J, et al. Experimental research on residence time of bulk non-combustibility of waste in a cold position device of ICFB[J]. Power System Engineering, 2003, 19: 41-43. |
23 | Cai R R, Zhang Y G. Force characteristic of a large dense object in a fluidized bed equipped with an inclined air distributor[J]. Advanced Powder Technology, 2016, 27: 599-609. |
24 | Harris A T, Davidson J F, Thorpe R B. Particle residence time distributions in circulating fluidized beds[J]. Chemical Engineering Science, 2003, 58: 2181-2202. |
25 | Hua L N, Wang J W, Li J H. CFD simulation of solids residence time distribution in a CFB riser[J]. Chemical Engineering Science, 2014, 117: 264-282. |
26 | Shi X G, Sun R J, Lan X G, et al. CPFD simulation of solids residence time and back-mixing in CFB risers[J]. Powder Technology, 2015, 271: 16-25. |
27 | Gao Y, Muzzio F J, Ierapetritou M G. A review of the residence time distribution (RTD) applications in solid unit operations[J]. Powder Technology, 2012, 228: 416-423. |
28 | Chen J L, Keairns D L. Particle separation from a fluidized mixture — simulation of the Westinghouse coal gasification combustor/gasifier operation[J]. Industrial and Engineering Chemistry, Process Design and Development, 1978, 17: 135-141. |
29 | Hua L N, Wang J W. Residence time distribution of particles in circulating fluidized bed risers[J]. Chemical Engineering Science, 2018, 186: 168-190 |
30 | Nauman E B. Residence time theory[J]. Industry & Engineering Chemistry Research, 2008, 47: 3752-3766. |
31 | Rees A, Davidson J, Hayhurst A. The rise of a buoyant sphere in a gas fluidized bed[J]. Chemical Engineering Science, 2005, 60(4): 1143-1153. |
2 | Choi Y T, Kim S D. Bubble characteristics in an internally circulating fluidized bed[J]. Journal of Chemical Engineering of Japan, 1991, 24(2): 195-202. |
3 | Nienow A W, Rowe P N, Chiba T. Mixing and segregation of a small portion of large particles in gas fluidized beds of considerably smaller ones[J]. AIChE Symposium Series, 1978, 74: 45-53. |
4 | Liu X H, Xu G W, Gao S Q. Fluidization of extremely large and widely sized coal particles as well as its application in an advanced chain grate boiler[J]. Powder Technology, 2008, 188: 23-29. |
5 | 江国栋, 魏利平, 吴长松, 等. 隔板式内循环流化床颗粒循环速率实验与模型[J]. 化工学报, 2017, 68(9): 3427-3433. |
Jiang G D, Wei L P, Wu C S, et al. Experimental and model studies on particle circulation rate in internal circulating clapboard-type fluidized bed[J]. CIESC Journal, 2017, 68(9): 3427-3433. | |
6 | Soria-Verdugo A, Garcia-Hernando N, Almendros-Lbanez J A, et al. Motion of a large object in a bubbling fluidized bed with a rotating distributor[J]. Chem. Eng. Process., 2011, 50: 859-868. |
7 | Cai R R, Zhang Y G, Li Q H, et al. Experimental characterizing the residence time distribution of large spherical objects immersed in a fluidized bed[J]. Powder Technology, 2014, 254: 22-29. |
8 | 尹斌, 章明川, 吴江, 等. L型定向风帽流化床中气-固流动的离散元素法模拟及可视化研究[J]. 中国电机工程学报, 2003, 23(7): 183-190. |
Yin B, Zhang M C, Wu J, et al. Discrete particle simulation and visualized research of the gas-solid flow in fluidized beds with L-type wind cap[J]. Proceedings of the CSEE, 2003, 23(7): 183-190. |
[1] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[2] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[3] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[4] | Mengbin ZHANG, Rui LI, Jiajie ZHANG, Suxia MA, Jiansheng ZHANG. Experimental study on dielectric properties of coal ash based on coplanar capacitance principle [J]. CIESC Journal, 2023, 74(7): 3028-3037. |
[5] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[6] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[7] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[8] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[9] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[10] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[11] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
[12] | Longfei JIA, Shaotong FU, Xing XIANG, Huahai ZHANG, Tao ZHANG, Limin WANG. Lattice Boltzmann simulations of the effect of particles movement on momentum transfer process [J]. CIESC Journal, 2023, 74(2): 735-747. |
[13] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[14] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[15] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||