CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 534-542.DOI: 10.11949/0438-1157.20201041
• Catalysis, kinetics and reactors • Previous Articles Next Articles
WANG Lian1,2(),WAN Chao1,3,4,CHENG Dangguo1,2(),CHEN Fengqiu1,2,ZHAN Xiaoli1,2
Received:
2020-08-04
Revised:
2020-10-03
Online:
2021-01-05
Published:
2021-01-05
Contact:
CHENG Dangguo
王炼1,2(),万超1,3,4,程党国1,2(),陈丰秋1,2,詹晓力1,2
通讯作者:
程党国
作者简介:
王炼(1995—),女,硕士研究生,基金资助:
CLC Number:
WANG Lian, WAN Chao, CHENG Dangguo, CHEN Fengqiu, ZHAN Xiaoli. Preparation of NiZnCe composite oxide and its catalytic performance for dehydrogenation of n-butane[J]. CIESC Journal, 2021, 72(1): 534-542.
王炼, 万超, 程党国, 陈丰秋, 詹晓力. NiZnCe复合氧化物的制备及其催化氧化正丁烷脱氢性能[J]. 化工学报, 2021, 72(1): 534-542.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 正丁烷 转化率/% | 选择性/% | ||||||
---|---|---|---|---|---|---|---|---|
二氧化物 | C1~C3 | 反-2-丁烯 | 顺-2-丁烯 | 1-丁烯 | 异丁烯 | 1,3-丁二烯 | ||
NiO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NiZn1 | 10.5 | 74.0 | 4.5 | 5.0 | 4.0 | 10.4 | 0.2 | 1.9 |
NiZn3 | 10.4 | 62.2 | 18.4 | 4.9 | 3.4 | 8.7 | 0.2 | 2.2 |
NiZn5 | 7.7 | 51.4 | 24.8 | 6.4 | 4.3 | 11.7 | 0.3 | 1.1 |
NiZn0.5 | 11.8 | 57.0 | 16.4 | 6.2 | 4.5 | 11.1 | 0.2 | 4.6 |
NiZn0.5Ce0.2 | 22.0 | 66.1 | 2.7 | 5.4 | 4.7 | 12.7 | 0.08 | 8.3 |
NiZn0.5Ce0.3 | 23.9 | 64.3 | 3.1 | 4.1 | 3.3 | 8.5 | 0.07 | 16.6 |
NiZn0.5Ce0.5 | 19.2 | 59.0 | 8.7 | 5.3 | 3.4 | 6.9 | 0.1 | 16.6 |
NiZn0.5Ce1 | 18.3 | 61.5 | 9.4 | 5.3 | 3.3 | 6.2 | 0.1 | 14.2 |
Table 1 n-Butane conversion and products selectivity over NiZnx and NiZn0.5Cey oxide catalyst
催化剂 | 正丁烷 转化率/% | 选择性/% | ||||||
---|---|---|---|---|---|---|---|---|
二氧化物 | C1~C3 | 反-2-丁烯 | 顺-2-丁烯 | 1-丁烯 | 异丁烯 | 1,3-丁二烯 | ||
NiO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NiZn1 | 10.5 | 74.0 | 4.5 | 5.0 | 4.0 | 10.4 | 0.2 | 1.9 |
NiZn3 | 10.4 | 62.2 | 18.4 | 4.9 | 3.4 | 8.7 | 0.2 | 2.2 |
NiZn5 | 7.7 | 51.4 | 24.8 | 6.4 | 4.3 | 11.7 | 0.3 | 1.1 |
NiZn0.5 | 11.8 | 57.0 | 16.4 | 6.2 | 4.5 | 11.1 | 0.2 | 4.6 |
NiZn0.5Ce0.2 | 22.0 | 66.1 | 2.7 | 5.4 | 4.7 | 12.7 | 0.08 | 8.3 |
NiZn0.5Ce0.3 | 23.9 | 64.3 | 3.1 | 4.1 | 3.3 | 8.5 | 0.07 | 16.6 |
NiZn0.5Ce0.5 | 19.2 | 59.0 | 8.7 | 5.3 | 3.4 | 6.9 | 0.1 | 16.6 |
NiZn0.5Ce1 | 18.3 | 61.5 | 9.4 | 5.3 | 3.3 | 6.2 | 0.1 | 14.2 |
催化剂 | 原子比① | SBET/(m2·g-1) | 孔容/(cm3·g-1) | ||
---|---|---|---|---|---|
Ni | Zn | Ce | |||
NiO | 1 | 0 | 0 | 2.7 | 0.008 |
NiZn1 | 1 | 0.97 | 0 | 2.4 | 0.009 |
NiZn3 | 1 | 3.19 | 0 | 2.9 | 0.011 |
NiZn5 | 1 | 5.09 | 0 | 3.1 | 0.010 |
NiZn0.5 | 1 | 0.54 | 0 | 3.3 | 0.013 |
NiZn0.5Ce0.2 | 1 | 0.56 | 0.15 | 8.5 | 0.041 |
NiZn0.5Ce0.3 | 1 | 0.55 | 0.28 | 6.7 | 0.028 |
NiZn0.5Ce0.5 | 1 | 0.53 | 0.47 | 7.8 | 0.046 |
NiZn0.5Ce1 | 1 | 0.52 | 0.83 | 9.1 | 0.049 |
Table 2 Atomic ratio, BET surface area, total pore volume of NiZnx and NiZn0.5Cey oxide catalysts
催化剂 | 原子比① | SBET/(m2·g-1) | 孔容/(cm3·g-1) | ||
---|---|---|---|---|---|
Ni | Zn | Ce | |||
NiO | 1 | 0 | 0 | 2.7 | 0.008 |
NiZn1 | 1 | 0.97 | 0 | 2.4 | 0.009 |
NiZn3 | 1 | 3.19 | 0 | 2.9 | 0.011 |
NiZn5 | 1 | 5.09 | 0 | 3.1 | 0.010 |
NiZn0.5 | 1 | 0.54 | 0 | 3.3 | 0.013 |
NiZn0.5Ce0.2 | 1 | 0.56 | 0.15 | 8.5 | 0.041 |
NiZn0.5Ce0.3 | 1 | 0.55 | 0.28 | 6.7 | 0.028 |
NiZn0.5Ce0.5 | 1 | 0.53 | 0.47 | 7.8 | 0.046 |
NiZn0.5Ce1 | 1 | 0.52 | 0.83 | 9.1 | 0.049 |
1 | 杨为民. 碳四烃转化与利用技术研究进展及发展前景[J]. 化工进展, 2015, 34(1): 1-9. |
Yang W M. Progress and perspectives on conversion and utilization of C4 hydrocarbons[J]. Chemical Industry and Engineering Progress, 2015, 34 (1): 1-9. | |
2 | 陈伟明. 全球基础石化原料多元化对丁二烯市场的影响[J]. 中国石油和化工经济分析, 2017, (5): 62-64. |
Chen W M. Impact of global diversification of basic petrochemical raw materials on the butadiene market[J]. Economic Analysis of China Petroleum and Chemical Industry, 2017, (5): 62-64. | |
3 | Li X Y, Cheng D G, Chen F Q, et al. Dual bed catalyst system for oxidative dehydrogenation of mixed-butenes: a synergistic mechanism[J].Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 225-233. |
4 | 林春光. 正丁烷应用方案研究[J]. 辽宁化工, 2015, (7): 827-829. |
Lin C G. Research on utilization of butane[J]. Liaoning Chemical Industry, 2015, (7): 827-829. | |
5 | 万超. 丁烯氧化脱氢制丁二烯铋钼基催化剂研究[D]. 杭州: 浙江大学, 2015. |
Wan C. Study on bismuth molybdenum-based catalystsfor oxidative dehydrogenation of 1-butene to 1, 3-butadiene[D]. Hangzhou: Zhejiang University, 2015. | |
6 | Li X Y, Cheng D G, Zhao Z J, et al. Temperature-induced deactivation mechanism of ZnFe2O4 for oxidative dehydrogenation of 1-butene[J]. Reaction Chemistry & Engineering, 2017, 2(2): 215-225. |
7 | Batiot C, Hodnett B K. The role of reactant and product bond energies in determining limitations to selective catalytic oxidations[J]. Applied Catalysis A General, 1996, 137(1): 179-191. |
8 | Slyemi S, Barama A, Barama S, et al. Comparative study of physico-chemical, acid-base and catalytic properties of vanadium based catalysts in the oxidehydrogenation of n-butane: effect of the oxide carrier[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(2): 831-845. |
9 | Zhang J, Liu X, Blume R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322(5898): 73-77. |
10 | Chaar M A, Patel D, Kung M C, et al. Selective oxidative dehydrogenation of butane over V-Mg-O catalysts[J]. Journal of Catalysis, 1987, 105(2): 483-498. |
11 | Jackson S D, Rugmini S. Dehydrogenation of n-butane over vanadia catalysts supported on θ-alumina[J]. Journal of Catalysis, 2007, 251: 59-68. |
12 | Harlin M E, Niemi V M, Krause A O I, et al. Effect of Mg and Zr modification on the activity of VOx/Al2O3 catalysts in the dehydrogenation of butanes[J]. Journal of Catalysis, 2001, 203: 242-252. |
13 | Wang C, Chen J G, Xing T, et al. Vanadium oxide supported on titanosilicates for the oxidative dehydrogenation of n-butane[J]. Industrial & Engineering Chemistry Research, 2015, 54(14): 3602-3610. |
14 | 朴昌林. 国内外钒工业的概况及对我国发展钒工业的若干建议[J]. 钢铁钒钛, 1982, (3): 95. |
Piao C L. Overview of vanadium industry at home and abroad and some suggestions for the development of vanadium industry in my country[J]. Iron Steel Vanadium Titanium, 1982, (3): 95. | |
15 | Ducarme V, Martin G A. Low temperature oxidative dehydrogenation of ethane over Ni-based catalysts[J]. Catalysis Letters, 1994, 23(1/2): 97-101. |
16 | Schuurman Y, Ducarme V, Chen T, et al. Low temperature oxidative dehydrogenation of ethane over catalysts based on group VIII metals[J]. Applied Catalysis A: General, 1997, 163(1/2): 227-235. |
17 | Heracleous E, Lee A F, Wilson K, et al. Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies[J]. Journal of Catalysis, 2005, 231(1): 159-171. |
18 | Tanimu G, Abussaud B A, Asaoka S, et al. Kinetic study on n‑butane oxidative dehydrogenation over the (Ni, Fe, Co)-Bi-O/γ-Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2773-2780. |
19 | 林志峰, 胡日茗, 周晓龙. 镍基催化剂的研究进展[J]. 化工学报, 2017, 68: 26-36. |
Lin Z F, Hu R M, Zhou X L. Research progress of Ni-based catalysts[J]. CIESC Journal, 2017, 68: 26-36. | |
20 | Heracleous E, Lemonidou A A. Ni-Me-O mixed metal oxides for the effective oxidative dehydrogenation of ethane to ethylene—effect of promoting metal Me[J]. Journal of Catalysis, 2010, 270(1): 67-75. |
21 | Berger-Karin C, Radnik J, Kondratenko E V. Mechanistic origins of the promoting effect of tiny amounts of Rh on the performance of NiOx/Al2O3 in partial oxidation of methane[J]. Journal of Catalysis, 2011, 280(1): 116-124. |
22 | Wu Y, Gao J, He Y, et al. Preparation and characterization of Ni-Zr-O nanoparticles and its catalytic behavior for ethane oxidative dehydrogenation[J]. Applied Surface Science, 2012, 258(11): 4922-4928. |
23 | Liu Y M, Wang L C, Chen M, et al. Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane[J]. Catalysis Letters, 2009, 130 (3/4): 350-354. |
24 | Jermy B R, Asaoka S, Al-Khattaf S. Influence of calcination on performance of Bi-Ni-O/gamma-alumina catalyst for n-butane oxidative dehydrogenation to butadiene[J]. Catal. Sci. Technol., 2015, 5(9): 4622-4635. |
25 | Madeira L M, Portela M F. Catalytic oxidative dehydrogenation of n-butane[J]. Catalysis Reviews, 2002, 44(2): 247-286. |
26 | Jermy B R, Ajayi B P, Abussaud B A, et al. Oxidative dehydrogenation of n-butane to butadiene over Bi-Ni-O/γ-alumina catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2015, 400: 121-131. |
27 | Elmutasim O, Tanimu G, Aljundi I H, et al. Bimetallic Bi-Ni oxides over carbide supports for oxidative dehydrogenation of n-butane: experimental and kinetic modelling [J]. The Canadian Journal of Chemical Engineering, 2018, 96(6): 1367-1376. |
28 | Tanimu G, Jermy B R, Asaoka S, et al. Composition effect of metal species in (Ni, Fe, Co)-Bi-O/gamma-Al2O3 catalyst on oxidative dehydrogenation of n-butane to butadiene [J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 111-120. |
29 | Tanimu G, Asaoka S, Al-Khattaf S. Effect of support in Ni-Bi-O/support catalyst on oxidative dehydrogenation of n-butane to butadiene[J]. Molecular Catalysis, 2017, 438: 245-255. |
30 | Arndt S, Uysal B, Berthold A, et al. Supported ZnO catalysts for the conversion of alkanes: about the metamorphosis of a heterogeneous catalyst[J]. Journal of Natural Gas Chemistry, 2012, 21(5): 581-594. |
31 | Solsona B, Concepción P, Hernández S, et al. Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts[J]. Catalysis Today, 2012, 180(1): 51-58. |
32 | Li C, Luo M F, Shen W J, et al. Reduction property and catalytic activity of Ce1-XNiXO2 mixed oxide catalysts for CH4 oxidation[J]. Applied Catalysis A General, 2003, 246(1): 1-9. |
33 | Andreeva D, Nedyalkova R, Ilieva L, et al. Gold-vanadia catalysts supported on ceria-alumina for complete benzene oxidation[J]. Applied Catalysis B Environmental, 2004, 52(3): 157-165. |
34 | Zhu J, Ommen J G V, Bouwmeester H J M, et al. Activation of O2 and CH4 on yttrium-stabilized zirconia for the partial oxidation of methane to synthesis gas[J]. Journal of Catalysis, 2005, 233(2): 434-441. |
35 | Jung J C, Kim H, Choi A S, et al. Effect of pH in the preparation of γ-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1, 3-butadiene: correlation between catalytic performance and oxygen mobility of γ-Bi2MoO6[J]. Catalysis Communications, 2007, 8: 625-628. |
36 | Jung J C, Lee H, Park D R, et al. Effect of calcination temperature on the catalytic perfomance of γ-Bi2MoO6 in the oxidative dehydrogenation of n-butene to 1, 3-butadiene [J]. Catalysis Letters, 2009, 131: 401-405. |
37 | Li J H, Wang C C, Huang C J, et al. Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene[J]. Applied Catalysis A General, 2010, 382(1): 99-105. |
38 | Abdel-Wahab M S, Jilani A, Yahia I S, et al. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: morphological, optical and XPS analysis[J]. Superlattices and Microstructures, 2016, 94: 108-118. |
39 | Tomellini M. X-Ray photoelectron spectra of defective nickel oxide[J]. Journal of the Chemical Society Faraday Transactions Physical Chemistry in Condensed Phases, 1988, 84(10): 3501-3510. |
40 | Salagre P, Fierro J L G, Medina F, et al. Characterization of nickel species on several γ-alumina supported nickel samples[J]. Journal of Molecular Catalysis A Chemical, 1996, 106(1/2): 125-134. |
41 | Vedrine J C, Hollinger G, Duc T M. Investigations of antigorite and nickel supported catalysts by X-ray photoelectron spectroscopy[J]. J.Phys.Chem., 1978, 82(13): 1515-1520. |
42 | Biju V, Khadar M A. Electronic structure of nanostructured nickel oxide using Ni 2p XPS analysis[J]. Journal of Nanoparticle Research, 2002, 4(3): 247-253. |
43 | 邢天. 氮化镓催化正丁烷氧化脱氢制烯烃研究[D]. 西安: 陕西师范大学, 2017. |
Xing T. Study on gallium nitride catalyzed oxidative dehydrogenation of n-butane to olefins[D]. Xi'an: Shaanxi Normal University, 2017. | |
44 | Mueller D N, Machala M L, Bluhm H, et al. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions[J]. Nature Communications, 2015, 6: 6097. |
45 | Wan C, Cheng D G, Chen F Q, et al. Oxidative dehydrogenation of 1-butene over vanadium modified bismuth molybdate catalyst: an insight into mechanism[J]. RSC Advances, 2015, 5(53): 42609-42615. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[10] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[11] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||