1 |
何维, 朱骅, 刘宇钢, 等. 超超临界发电技术展望[J]. 能源与环保, 2019, 41(6): 77-81.
|
|
He W, Zhu H, Liu Y G, et al. Forest for ultra-super critical power generation technology[J]. China Energy and Environmental Protection, 2019, 41(6): 77-81.
|
2 |
李少华, 刘利, 彭红文. 超超临界发电技术在中国的发展现状[J]. 煤炭加工与综合利用, 2020, (2): 65-70, 74.
|
|
Li S H, Liu L, Peng H W. The present situation of the development of ultra-supercritical power generation technology in China[J]. Coal Processing & Comprehensive Utilization, 2020, (2): 65-70, 74.
|
3 |
朱婧, 王海靖, 金君素. 超临界技术在煤炭清洁转化领域中的应用进展与展望[J]. 化学工业, 2016, 34(1): 31-34.
|
|
Zhu J, Wang H J, Jin J S. Progress and prospect of supercritical fluid technology in the field of clean coal conversion[J]. Chemical Industry, 2016, 34(1): 31-34.
|
4 |
王为术, 徐维晖, 陈听宽, 等. 内螺纹管内流动传热特性研究进展[J]. 华北水利水电学院学报, 2011, 32(4): 81-87.
|
|
Wang W S, Xu W H, Chen T K, et al. Research progress on characteristics of flow and heat transfer in internally ribbed tubes[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2011, 32(4): 81-87.
|
5 |
Li Z H, Wu Y X, Tang G L, et al. Comparison between heat transfer to supercritical water in a smooth tube and in an internally ribbed tube[J]. International Journal of Heat & Mass Transfer, 2015, 84: 529-541.
|
6 |
Xu W, Liu G, Zhang Q, et al. Heat transfer and friction factor of Therminol liquid phase heat transfer fluid in a ribbed tube[J]. Chinese Journal of Chemical Engineering, 2017, (10): 1343-1351.
|
7 |
Yang D, Pan J, Zhou C Q, et al. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler[J]. Experimental Thermal & Fluid Science, 2011, 35(2): 291-300.
|
8 |
Xie H Y, Yang D, Zhao Y J, et al. Experimental investigation on critical heat flux for water flowing in a vertical uniformly heated rifled tube under near-critical pressures[J]. Journal of Thermal Science, 2018, 27(6): 527-540.
|
9 |
Shen Z, Yang D, Mao K, et al. Heat transfer characteristics of water flowing in a vertical upward rifled tube with low mass flux[J]. Experimental Thermal & Fluid Science, 2016, 70: 341-353.
|
10 |
万李, 杨冬, 董乐, 等. 超超临界循环流化床锅炉水动力试验研究与理论计算[J]. 电力科技与环保, 2019, 35(2): 13-22.
|
|
Wan L, Yang D, Dong L, et al. Experimental research and theoretical calculation of thermal-hydraulic characteristic for the ultra-supercritical circulating fluidized bed boiler[J]. Electric Power Technology and Environmental Protection, 2019, 35(2): 13-22.
|
11 |
尹飞, 李会雄, 陈听宽, 等. 倾斜内螺纹管中亚临界及超临界压力汽-液传热特性研究[J]. 核动力工程, 2005, 26(1): 15-18.
|
|
Yin F, Li H X, Chen T K, et al. An investigation on heat transfer characteristics of sub-critical and supercritical pressure steam-liquid in an inclined internally ribbed tube[J]. Nuclear Power Engineering, 2005, 26(1): 15-18.
|
12 |
王为术, 罗毓珊, 陈听宽, 等. 超临界压力下倾斜上升内螺纹管传热特性的试验研究[J]. 动力工程学报, 2005, 25(6): 790-793.
|
|
Wang W S, Luo Y S, Chen T K, et al. Experimental study of heat transfer characteristics under supercritical pressure of upwards inclined rifled tubes[J]. Journal of Chinese Society of Power Engineering, 2005, 25(6): 790-793.
|
13 |
郭宇朦, 李会雄. 螺旋管圈内螺纹管内上母线处超临界水传热关联式建立[J]. 热力发电, 2018, 47(10): 51-57.
|
|
Guo Y M, Li H X. Establishment of heat transfer correlation to the supercritical water flow on the top of cross section in spiral wall with internal rib[J]. Thermal Power Generation, 2018, 47(10): 51-57.
|
14 |
居怀明, 徐元辉, 李怀萱. 载热质热物性计算程序及数据手册[M]. 北京: 原子能出版社, 1990: 45-78.
|
|
Ju H M, Xu Y H, Li H X. Thermophysical Property Calculation Program and Data Handbook[M]. Beijing: Atomic Press, 1990: 45-78.
|
15 |
Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
|
16 |
Gradziel S, Majewski K, Majdak M. Experimental determination of the heat transfer coefficient in internally rifled tubes[J]. Thermal Science, 2019, 23(4): 1163-1174.
|
17 |
张伟强, 李会雄, 张庆, 等. 亚临界压力区垂直上升管内传热特性实验研究[J]. 工程热物理学报, 2018, 39(8): 1751-1757.
|
|
Zhang W Q, Li H X, Zhang Q, et al. Experimental investigation on heat transfer in vertically-upward tube at subcritical pressures[J]. Journal of Engineering Thermophysics, 2018, 39(8): 1751-1757.
|
18 |
Wang J G, Li H X, Guo B, et al. Investigation on the mechanism of abnormal heat transfer of supercritical pressure water in vertically-upward tubes in the large specific heat region[C]//International Symposium on Multiphase F. American Institute of Physics, 2010.
|
19 |
Zhang Q, Li H, Zhang W, et al. Experimental study on heat transfer to the supercritical water upward flow in a vertical tube with internal helical ribs[J]. International Journal of Heat and Mass Transfer, 2015, 89(10): 1044-1053.
|
20 |
陈听宽, 孙丹, 罗毓珊, 等. 超临界锅炉内螺纹管传热特性的研究[J]. 工程热物理学报, 2003, (3): 429-432.
|
|
Chen T K, Sun D, Luo Y S, et al. Investigation on the heat transfer characteristics of internally ribbed tube for supercritical pressure boiler[J]. Journal of Engineering Thermophysics, 2003, (3): 429-432.
|
21 |
林宗虎. 气液两相流和沸腾传热[M]. 西安: 西安交通大学出版社, 2003: 160.
|
|
Lin Z H. Gas-liquid Two-phase Flow and Boiling Heat Transfer[M]. Xi'an: Xi'an Jiao Tong University Press, 2003: 160.
|
22 |
Li Y, Yang D, Ouyang S J, et al. Coupling effect of heat transfer and flow resistance in the rifled tube water wall of a ultra-supercritical CFB boiler[J]. Journal of Thermal Science, 2019, 28(5): 1078-1088.
|
23 |
杨传勇, 徐进良, 王晓东, 等. 管道倾斜角度对超临界CO2管内换热特性的影响[J]. 原子能科学技术, 2013, (9): 1522-1528.
|
|
Yang C Y, Xu J L, Wang X D, et al. Effect of tube inclination angel on heat transfer characteristics of supercritical CO2 in tube[J]. Atomic Energy Science and Technology, 2013, (9): 1522-1528.
|
24 |
Kim J Y, Ghajar A J. A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes[J]. International Journal of Multiphase Flow, 2006, 32(4): 447-465.
|
25 |
韩海龙. 超临界锅炉水冷壁中超临水的传热及阻力特性研究[D]. 西安: 西安建筑科技大学, 2016.
|
|
Han H L. Heat transfer and frictional resistance of vertical-upward internally-ribbed tubes in supercritical pressure region[D]. Xi'an: Xi'an University of Architecture and Technology, 2016.
|
26 |
Wang W, Yang D, Jiang H, et al. Heat transfer and frictional-resistance characteristics of the water wall tube of an ultra-supercritical CFB boiler[J]. The Journal of Supercritical Fluids, 2017, 128: 279-290.
|
27 |
Ackerman J W. Pseudoboiling heat transfer to supercritical pressure water in smooth and ribbed tubes[J]. Journal of Heat Transfer, 1970, 92(3): 490.
|
28 |
Zhang W, Li H, Zhang Q, et al. Experimental investigation on heat transfer deterioration of supercritical pressure water in vertically-upward internally-ribbed tubes[J]. International Journal of Heat and Mass Transfer, 2018, 120: 930-943.
|
29 |
Pan J, Yang D, Dong Z, et al. Experimental investigation on heat transfer characteristics of low mass flux rifled tube with upward flow[J]. International Journal of Heat and Mass Transfer, 2011, 54(13/14): 2952-2961.
|
30 |
王建国. 超临界锅炉水冷壁管低质量流速下的传热及阻力特性研究[D]. 西安: 西安交通大学, 2010.
|
|
Wang J G. Investigation on heat transfer and frictional pressure drop at low mass flux in the water-wall tubes of supercritical boiler[D]. Xi'an: Xi'an Jiaotong University Press, 2010.
|