CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2102-2112.DOI: 10.11949/0438-1157.20201036
• Catalysis, kinetics and reactors • Previous Articles Next Articles
WANG Ning1(),HUI Lei1,CHEN Mei1,3,LI Wei1(),ZHOU Qi2
Received:
2020-07-28
Revised:
2020-11-17
Online:
2021-04-05
Published:
2021-04-05
Contact:
LI Wei
通讯作者:
历伟
作者简介:
王宁(1995—),女,硕士研究生,基金资助:
CLC Number:
WANG Ning, HUI Lei, CHEN Mei, LI Wei, ZHOU Qi. POSS-modified supported Ziegler-Natta catalyst and its ethylene /1-hexene copolymerization[J]. CIESC Journal, 2021, 72(4): 2102-2112.
王宁, 惠磊, 陈美, 历伟, 周琦. POSS改性负载型Ziegler-Natta催化剂及其乙烯/1-己烯共聚反应[J]. 化工学报, 2021, 72(4): 2102-2112.
Add to citation manager EndNote|Ris|BibTeX
Run | Cat. | Ti①/%(mass) | Specific surface area②/(m3·g-1) | Pore size/nm |
---|---|---|---|---|
1 | Cat-POSS-0 | 6.9 | 120 | 10.2 |
2 | Cat-POSS-10 | 8.0 | 135.6 | 10.4 |
3 | Cat-POSS-20 | 7.7 | 135.7 | 10.8 |
4 | Cat-POSS-30 | 7.3 | 83.8 | 8.2 |
5 | Cat-POSS-50 | 7.5 | 50.5 | 7.2 |
Table 1 The structure parameters of catalysts
Run | Cat. | Ti①/%(mass) | Specific surface area②/(m3·g-1) | Pore size/nm |
---|---|---|---|---|
1 | Cat-POSS-0 | 6.9 | 120 | 10.2 |
2 | Cat-POSS-10 | 8.0 | 135.6 | 10.4 |
3 | Cat-POSS-20 | 7.7 | 135.7 | 10.8 |
4 | Cat-POSS-30 | 7.3 | 83.8 | 8.2 |
5 | Cat-POSS-50 | 7.5 | 50.5 | 7.2 |
Cat. | 1-Hexene/ %(vol) | 1-Hexene content①/%(mol) | Activity/ (g·(mol?h)-1) | PE yield/g | Weight-average molecular weight, | Molecular weight distribution, MWD | ||
---|---|---|---|---|---|---|---|---|
Cat-POSS-0 | 0 | — | 2.9×105 | 3.2 | 136.4 | 46.6 | 172.7×104 | 7.2 |
3 | 0 | 3.4×105 | 4.3 | 129.2 | 45.7 | 134.8×104 | 8.0 | |
5 | 0 | 3.8×105 | 4.0 | 127.5 | 43.8 | 129.5×104 | 6.0 | |
9 | 4.3 | 4.2×105 | 4.7 | 125.6 | 40.5 | 109.1×104 | 7.6 | |
17 | 8.7 | 3.1×105 | 3.5 | 122.5 | 34.8 | 88.7×104 | 7.3 | |
Cat-POSS-20 | 0 | — | 3.3×105 | 4.5 | 137.6 | 48.6 | 94.8×104 | 3.8 |
3 | 0.1 | 7.2×105 | 9.7 | 131.7 | 32.1 | 91.2×104 | 4.6 | |
5 | 0.7 | 7.3×105 | 9.8 | 130.6 | 33.1 | 88.7×104 | 4.7 | |
9 | 3.5 | 9.9×105 | 13.3 | 128.7 | 32.4 | 84.3×104 | 4.8 | |
17 | 18.9 | 10.3×105 | 13.8 | 126.2 | 29.6 | 74.4×104 | 6.1 |
Table 2 The ethylene/1-hexene copolymerization results of different catalysts
Cat. | 1-Hexene/ %(vol) | 1-Hexene content①/%(mol) | Activity/ (g·(mol?h)-1) | PE yield/g | Weight-average molecular weight, | Molecular weight distribution, MWD | ||
---|---|---|---|---|---|---|---|---|
Cat-POSS-0 | 0 | — | 2.9×105 | 3.2 | 136.4 | 46.6 | 172.7×104 | 7.2 |
3 | 0 | 3.4×105 | 4.3 | 129.2 | 45.7 | 134.8×104 | 8.0 | |
5 | 0 | 3.8×105 | 4.0 | 127.5 | 43.8 | 129.5×104 | 6.0 | |
9 | 4.3 | 4.2×105 | 4.7 | 125.6 | 40.5 | 109.1×104 | 7.6 | |
17 | 8.7 | 3.1×105 | 3.5 | 122.5 | 34.8 | 88.7×104 | 7.3 | |
Cat-POSS-20 | 0 | — | 3.3×105 | 4.5 | 137.6 | 48.6 | 94.8×104 | 3.8 |
3 | 0.1 | 7.2×105 | 9.7 | 131.7 | 32.1 | 91.2×104 | 4.6 | |
5 | 0.7 | 7.3×105 | 9.8 | 130.6 | 33.1 | 88.7×104 | 4.7 | |
9 | 3.5 | 9.9×105 | 13.3 | 128.7 | 32.4 | 84.3×104 | 4.8 | |
17 | 18.9 | 10.3×105 | 13.8 | 126.2 | 29.6 | 74.4×104 | 6.1 |
No. of peak | Monomer sequence | Chemical shift | |
---|---|---|---|
Theoretical | Experimental | ||
1 | EHE | 37.78 | 37.82 |
2 | EHEE | 34.54 | 34.48 |
3 | EHE | 34.14 | 34.26 |
4 | HEEE | 30.47 | 30.28 |
5 | EEE | 30.00 | 29.96 |
6 | EHE | 29.34 | 29.42 |
7 | HHEE | 27.09 | 27.22 |
8 | EHE+HHE+HHH | 23.37 | 23.20 |
9 | EHE+HHE+HHH | 14.12 | 14.02 |
Table 3 Chemical shift of copolymer of ethylene and 1-hexene
No. of peak | Monomer sequence | Chemical shift | |
---|---|---|---|
Theoretical | Experimental | ||
1 | EHE | 37.78 | 37.82 |
2 | EHEE | 34.54 | 34.48 |
3 | EHE | 34.14 | 34.26 |
4 | HEEE | 30.47 | 30.28 |
5 | EEE | 30.00 | 29.96 |
6 | EHE | 29.34 | 29.42 |
7 | HHEE | 27.09 | 27.22 |
8 | EHE+HHE+HHH | 23.37 | 23.20 |
9 | EHE+HHE+HHH | 14.12 | 14.02 |
1 | Carlini C, D'Alessio A, Giaiacopi S, et al. Linear low-density polyethylenes by co-polymerization of ethylene with 1-hexene in the presence of titanium precursors and organoaluminium co-catalysts[J]. Polymer, 2007, 48(5): 1185-1192. |
2 | Phiwkliang W, Jongsomjit B, Praserthdam P. Synergistic effects of the ZnCl2-SiCl4 modified TiCl4/MgCl2/THF catalytic system on ethylene/1-hexene and ethylene/1-octene copolymerizations[J]. Chinese Journal of Polymer Science, 2014, 32(1): 84-91. |
3 | Czaja K, Białek M. Microstructure of ethylene-1-hexene and ethylene-1-octene copolymers obtained over Ziegler-Natta catalysts supported on MgCl2(THF)2[J]. Polymer, 2001, 42(6): 2289-2297. |
4 | Yang H R, Huang B, Fu Z S, et al. Ethylene/1-hexene copolymerization with supported Ziegler-Natta catalysts prepared by immobilizing TiCl3(OAr) onto MgCl2[J]. Journal of Applied Polymer Science, 2015, 132(4): 41329. |
5 | Yang H R, Zhang L T, Fu Z S, et al. Comonomer effects in copolymerization of ethylene and 1-hexene with MgCl2-supported Ziegler-Natta catalysts: new evidences from active center concentration and molecular weight distribution[J]. Journal of Applied Polymer Science, 2015, 132(2): 41264. |
6 | 楼均勤, 刘小燕, 傅智盛, 等. 2, 6-二异丙基苯酚改性负载型Ziegler-Natta催化剂及其乙烯-1-己烯共聚反应[J]. 高分子学报, 2009, (8): 748-755. |
Lou J Q, Liu X Y, Fu Z S, et al. Ethylene-1-hexene copolymerization with a 2,6-diisopropylphenol modified supported Ziegler-Natta catalyst[J]. Acta Polymerica Sinica, 2009, (8): 748-755. | |
7 | Kissin Y V, Mirabella F M, Meverden C C. Multi-center nature of heterogeneous Ziegler-Natta catalysts: TREF confirmation[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(19): 4351-4362. |
8 | Hui L, Yue Z, Yang H Q, et al. Influence of the fragmentation of POSS-modified heterogeneous catalyst on the formation of chain entanglements[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9400-9406. |
9 | Li W, Yang H, Zhang J, et al. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene[J]. Chemical Communications (Cambridge, England), 2016, 52(74): 11092-11095. |
10 | Chen Y M, Liang P, Yue Z, et al. Entanglement formation mechanism in the POSS modified heterogeneous Ziegler-Natta catalysts[J]. Macromolecules, 2019, 52(20): 7593-7602. |
11 | Yue Z, Wang N, Cao Y, et al. Reduced entanglement density of ultrahigh-molecular-weight polyethylene favored by the isolated immobilization on the MgCl2 (110) plane[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3351-3358. |
12 | Li W, Hui L, Xue B, et al. Facile high-temperature synthesis of weakly entangled polyethylene using a highly activated Ziegler-Natta catalyst[J]. Journal of Catalysis, 2018, 360: 145-151. |
13 | Xue B, Hui L, Yang H Q, et al. Immobilization of Ziegler-Natta catalyst for ethylene polymerization on macropores SiO2 with an open-framework structure[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 135-142. |
14 | Pracella M, D'Alessio A, Giaiacopi S, et al. FTIR microanalysis and phase behaviour of ethylene/1-hexene random copolymers[J]. Macromolecular Chemistry and Physics, 2007, 208(14): 1560-1571. |
15 | Kim J H, Han T K, Choi H K, et al. Copolymerization of ethylene and 1-butene with highly active TI/MG bimetallic catalysts. Effect of partial activation by AlEt2Cl[J]. Macromolecular Rapid Communications, 1995, 16(2): 113-118. |
16 | Parada A, Rajmankina T, Chirinos J J, et al. Catalytic systems based on TiCl4/MgCl2/SiCl4-n(OR)n for olefin polymerization[J]. Designed Monomers and Polymers, 2003, 6(1): 1-10. |
17 | Choi J H, Chung J S, Shin H W, et al. The effect of alcohol treatment in the preparation of MgCl2 support by a recrystallization method on the catalytic activity and isotactic index for propylene polymerization[J]. European Polymer Journal, 1996, 32(4): 405-410. |
18 | Panchenko V N, Semikolenova N V, Danilova I G, et al. IRS study of ethylene polymerization catalyst SiO2/methylaluminoxane/zirconocene[J]. Journal of Molecular Catalysis A: Chemical, 1999, 142(1): 27-37. |
19 | Seenivasan K, Gallo E, Piovano A, et al. Silica-supported Ti chloride tetrahydrofuranates, precursors of Ziegler-Natta catalysts[J]. Dalton Transactions, 2013, 42(35): 12706-12713. |
20 | Groppo E, Seenivasan K, Gallo E, et al. Activation and in situ ethylene polymerization on silica-supported Ziegler-Natta catalysts[J]. ACS Catalysis, 2015, 5(9): 5586-5595. |
21 | Pletcher P, Welle A, Vantomme A, et al. Quality control for Ziegler-Natta catalysis via spectroscopic fingerprinting[J]. Journal of Catalysis, 2018, 363: 128-135. |
22 | Lamberti C, Zecchina A, Groppo E, et al. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4951-5001. |
23 | D'Amore M, Thushara K S, Piovano A, et al. Surface investigation and morphological analysis of structurally disordered MgCl2 and MgCl2/TiCl4 Ziegler-Natta catalysts[J]. ACS Catalysis, 2016, 6(9): 5786-5796. |
24 | Sozzani P, Bracco S, Comotti A, et al. Stoichiometric compounds of magnesium dichloride with ethanol for the supported Ziegler-Natta catalysis: first recognition and multidimensional MAS NMR study[J]. Journal of the American Chemical Society, 2003, 125(42): 12881-12893. |
25 | D'Amore M, Credendino R, Budzelaar P H M, et al. A periodic hybrid DFT approach (including dispersion) to MgCl2-supported Ziegler-Natta catalysts(1): TiCl4 adsorption on MgCl2 crystal surfaces[J]. Journal of Catalysis, 2012, 286: 103-110. |
26 | Romano D, Tops N, Andablo-Reyes E, et al. Influence of polymerization conditions on melting kinetics of low entangled UHMWPE and its implications on mechanical properties[J]. Macromolecules, 2014, 47(14): 4750-4760. |
27 | Yu Y, Busico V, Budzelaar P H M, et al. Of poisons and antidotes in polypropylene catalysis[J]. Angewandte Chemie International Edition, 2016, 55(30): 8590-8594. |
28 | Chen M, Chen Y M, Li W, et al. Selective distribution and contribution of nickel based pre-catalyst in the multisite catalyst for the synthesis of desirable bimodal polyethylene[J]. European Polymer Journal, 2020, 135: 109878. |
29 | 豆秀丽, 刘伟娇, 义建军, 等. MgCl2-SiO2复合载体Ti系催化剂的制备及其催化乙烯/1-己烯共聚[J]. 石油化工, 2010, 39(7): 744-749. |
Dou X L, Liu W J, Yi J J, et al. Preparation and characterization of TiCl4/MgCl2-SiO2 di-support catalyst system for copolymerization of ethylene with 1-hexene[J]. Petrochemical Technology, 2010, 39(7): 744-749. | |
30 | Sukulova V V, Barabanov A A, Matsko M A, et al. Kinetic features of ethylene copolymerization with 1-hexene over titanium-magnesium Ziegler-Natta catalysts: effect of comonomer on the number of active centers and the propagation rate constant[J]. Journal of Catalysis, 2019, 369: 276-282. |
31 | Seger M R, Maciel G E. Quantitative 13C NMR analysis of sequence distributions in poly(ethylene-co-1-hexene)[J]. Analytical Chemistry, 2004, 76(19): 5734-5747. |
32 | Grant D M, Paul E G. Carbon-13 magnetic resonance(Ⅱ): Chemical shift data for the alkanes[J]. Journal of the American Chemical Society, 1964, 86(15): 2984-2990. |
[1] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[2] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[6] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
[7] | Qian LIU, Yu CAO, Qi ZHOU, Jingshan MU, Wei LI. Design of Ziegler-Natta catalyst modified with pore structure and preparation of UHMWPE with high impact resistance and low entanglement [J]. CIESC Journal, 2023, 74(3): 1092-1101. |
[8] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[9] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[10] | Lei WANG, Yong JIANG, Dazhong ZHONG, Jiayuan LI, Genyan HAO, Qiang ZHAO, Jinping LI. Carbonized metal-organic framework for carbon dioxide reduction to ethylene and ethanol [J]. CIESC Journal, 2022, 73(8): 3576-3585. |
[11] | Xiaoqiang FAN, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Xiaofei WANG, Xiaobo HU, Guodong HAN, Yongrong YANG, Wenqing WU. Development of cloudy gas-liquid fluidized bed ethylene polymerization process and high performance products [J]. CIESC Journal, 2022, 73(6): 2742-2747. |
[12] | Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation [J]. CIESC Journal, 2022, 73(4): 1585-1596. |
[13] | Lixia WANG, Zhaojie BI, Miaolei SHI, Chen WANG, Dongfang WANG, Qian LI. Effect of blending mode and ratio of UHMWPE/PEG on the entanglement behavior and properties of UHMWPE [J]. CIESC Journal, 2022, 73(2): 933-940. |
[14] | Bo ZHANG, Xiaofei CHEN, Siyao ZHAO, Xin ZHOU. Progress of ethane-selective adsorbents for efficient purification of ethylene [J]. CIESC Journal, 2022, 73(10): 4255-4267. |
[15] | GAO Shuaitao, LIU Xueke, ZHANG Li, LIU Fen, YU Jiang, SHANG Jianfeng, OU Tianxiong, ZHOU Zheng, CHEN Pingwen. Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2 [J]. CIESC Journal, 2021, 72(S1): 413-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||