CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 413-420.DOI: 10.11949/0438-1157.20200441
• Separation engineering • Previous Articles Next Articles
GAO Shuaitao1(),LIU Xueke1,ZHANG Li1,LIU Fen1,YU Jiang1(),SHANG Jianfeng2,OU Tianxiong2,ZHOU Zheng3,CHEN Pingwen3
Received:
2020-04-29
Revised:
2020-10-06
Online:
2021-06-20
Published:
2021-06-20
Contact:
YU Jiang
高帅涛1(),刘雪珂1,张丽1,刘芬1,余江1(),商剑锋2,欧天雄2,周政3,陈平文3
通讯作者:
余江
作者简介:
高帅涛(1994—),男,硕士研究生,基金资助:
CLC Number:
GAO Shuaitao, LIU Xueke, ZHANG Li, LIU Fen, YU Jiang, SHANG Jianfeng, OU Tianxiong, ZHOU Zheng, CHEN Pingwen. Aspen Plus simulation on selective separation of high concentration acid gas of H2S and CO2[J]. CIESC Journal, 2021, 72(S1): 413-420.
高帅涛, 刘雪珂, 张丽, 刘芬, 余江, 商剑锋, 欧天雄, 周政, 陈平文. Aspen Plus模拟高浓度H2S/CO2酸性气的选择性分离[J]. 化工学报, 2021, 72(S1): 413-420.
Add to citation manager EndNote|Ris|BibTeX
组分 | 摩尔分数/% |
---|---|
CO2 | 54.97 |
N2 | 12.93 |
H2S | 31.38 |
其他 | 0.72 |
Table 1 Tail gas components from coal to hydrogen in a factory
组分 | 摩尔分数/% |
---|---|
CO2 | 54.97 |
N2 | 12.93 |
H2S | 31.38 |
其他 | 0.72 |
项目 | 原料气 | H2S吸收塔进气 | H2S吸收塔尾气 | 吸收塔尾气 | CO2尾气 | H2S尾气 | CO2贫液 | H2S贫液 |
---|---|---|---|---|---|---|---|---|
T/℃ | 38 | 20 | 19.51 | 16.2 | 25 | 25 | 48.5 | 67.7 |
p/MPa | 0.2 | 1 | 0.4 | 0.4 | 0.001 | 0.001 | 0.001 | 0.001 |
摩尔流量/(kmol/h) | 46.78 | 101 | 47.1 | 6.911 | 25.62 | 14.10 | 230 | 130.109 |
分摩尔流量/(kmol/h) | ||||||||
NHD | <0.001 | trace | trace | 0.002 | 0.001 | 230 | 129.999 | |
CO2 | 25.73 | 30 | 40 | 0.001 | 25.51 | 0.18 | 0.04 | <0.001 |
N2 | 7.017 | 7.04 | 7.08 | 6.91 | 0.107 | <0.001 | trace | trace |
H2S | 14.03 | 64.3 | 0 | trace | 0.002 | 13.922 | <0.001 | 0.11 |
摩尔分数 | ||||||||
NHD | 402×10-9 | 118×10-9 | 70×10-9 | 84×10-6 | 84×10-6 | 1 | 0.999 | |
CO2 | 0.55 | 0.3 | 0.85 | 149×10-6 | 0.996 | 0.013 | 181×10-6 | 2×10-6 |
N2 | 0.15 | 0.07 | 0.15 | 1 | 0.004 | 954×10-9 | 12×10-9 | trace |
H2S | 0.3 | 0.63 | 58×10-6 | trace | 67×10-6 | 0.987 | 86×10-9 | 846×10-6 |
Table 2 Optimization results of simulation
项目 | 原料气 | H2S吸收塔进气 | H2S吸收塔尾气 | 吸收塔尾气 | CO2尾气 | H2S尾气 | CO2贫液 | H2S贫液 |
---|---|---|---|---|---|---|---|---|
T/℃ | 38 | 20 | 19.51 | 16.2 | 25 | 25 | 48.5 | 67.7 |
p/MPa | 0.2 | 1 | 0.4 | 0.4 | 0.001 | 0.001 | 0.001 | 0.001 |
摩尔流量/(kmol/h) | 46.78 | 101 | 47.1 | 6.911 | 25.62 | 14.10 | 230 | 130.109 |
分摩尔流量/(kmol/h) | ||||||||
NHD | <0.001 | trace | trace | 0.002 | 0.001 | 230 | 129.999 | |
CO2 | 25.73 | 30 | 40 | 0.001 | 25.51 | 0.18 | 0.04 | <0.001 |
N2 | 7.017 | 7.04 | 7.08 | 6.91 | 0.107 | <0.001 | trace | trace |
H2S | 14.03 | 64.3 | 0 | trace | 0.002 | 13.922 | <0.001 | 0.11 |
摩尔分数 | ||||||||
NHD | 402×10-9 | 118×10-9 | 70×10-9 | 84×10-6 | 84×10-6 | 1 | 0.999 | |
CO2 | 0.55 | 0.3 | 0.85 | 149×10-6 | 0.996 | 0.013 | 181×10-6 | 2×10-6 |
N2 | 0.15 | 0.07 | 0.15 | 1 | 0.004 | 954×10-9 | 12×10-9 | trace |
H2S | 0.3 | 0.63 | 58×10-6 | trace | 67×10-6 | 0.987 | 86×10-9 | 846×10-6 |
1 | Mirfendereski S M, Niazi Z, Mohammadi T. Selective removal of H2S from gas streams with high CO2 concentration using hollow-fiber membrane contractors [J]. Chemical Engineering & Technology, 2019, 42(1): 196-208. |
2 | Afsharpour A, Haghtalab A. Simultaneous measurement absorption of CO2 and H2S mixture into aqueous solutions containing Diisopropanolamine blended with 1-butyl-3-methylimidazolium acetate ionic liquid [J]. International Journal of Greenhouse Gas Control, 2017, 58: 71-80. |
3 | 吴振中, 李发永, 曹作刚. 含高浓度H2S炼厂酸性气体处理新工艺[J]. 石油化工高等学校学报, 2005, 18(4): 12-15. |
Wu Z Z, Li F Y, Cao Z G. New process for treating high concentrated H2S refinery acidic gas [J]. Journal of Petrochemical Universities, 2005, 18(4): 12-15. | |
4 | Li Y, Huang W J, Zheng D X, et al. Solubilities of CO2 capture absorbents 2-ethoxyethyl ether, 2-butoxyethyl acetate and 2-(2-ethoxyethoxy)ethyl acetate [J]. Fluid Phase Equilibria, 2014, 370: 1-7. |
5 | Madeddu C, Errico M, Baratti R. Solvent recovery system for a CO2-MEA reactive absorption-stripping plant [J]. Chemical Engineering Transactions, 2019, 74: 805-810. |
6 | Shiflett M B, Niehaus A M S, Yokozeki A. Separation of CO2 and H2S using room-temperature ionic liquid [bmim][MeSO4] [J]. Journal of Chemical & Engineering Data, 2010, 55(11): 4785-4793. |
7 | 孟艳芳. 常见煤制气中的酸性气体脱除工艺技术特性对比与选择[J]. 山西能源学院学报, 2017, 30(3): 89-90, 94. |
Meng Y F. Comparison and selection of technical characteristics of acid gas removal in common coal gasification [J]. Journal of Shanxi Institute of Energy, 2017, 30(3): 89-90, 94. | |
8 | 陈昌介, 何金龙, 温崇荣. 高含硫天然气净化技术现状及研究方向[J]. 天然气工业, 2013, 33(1): 112-115. |
Chen C J, He J L, Wen C R. A state of the art of high-sulfur natural gas sweetening technology and its research direction [J]. Natural Gas Industry, 2013, 33(1): 112-115. | |
9 | Ma C Y, Liu C, Lu X H, et al. Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading [J]. Applied Energy, 2018, 225: 437-447. |
10 | Yang S, Qian Y, Yang S Y. Development of a full CO2 capture process based on the rectisol wash technology [J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6186-6193. |
11 | 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448. |
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry [J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448. | |
12 | 李正西. NHD脱硫脱碳技术应用 [J]. 煤化工, 2004, 32(3): 53-57. |
Li Z X. Application of the NHD technology for desulfurization and decarbonization [J]. Coal Chemical Industry, 2004, 32(3): 53-57. | |
13 | 林民鸿. NHD气体净化技术理论与实践(上) [J]. 化肥工业, 2000, 27(4): 17-21. |
Lin M H. NHD gas purification technology: theory and practice (Ⅰ) [J]. Journal of the Chemical Fertilizer Industry, 2000, 27(4): 17-21. | |
14 | Im D, Roh K, Kim J, et al. Economic assessment and optimization of the Selexol process with novel additives [J]. International Journal of Greenhouse Gas Control, 2015, 42: 109-116. |
15 | Ramzan N, Shakeel U, Güngör A, et al. Techno-economic analysis of selexol and sulfinol processes for pre-combustion CO2 capture [C]// 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). Islamabad, Pakistan, 2018: 1-6. |
16 | 邱朋华, 李丹丹, 徐宝龙, 等. 基于Aspen Plus对Selexol分离CO2流程的分析[J]. 中国电机工程学报, 2014, 34(8): 1231-1237. |
Qiu P H, Li D D, Xu B L, et al. Analysis of CO2 separation by Selexol based on Aspen Plus [J]. Proceedings of the CSEE, 2014, 34(8): 1231-1237. | |
17 | 朱林, 艾珍, 王大军, 等. 使用N-甲酰吗啉和聚乙二醇二甲醚溶剂分离H2S和CO2流程模拟比较[J]. 化工学报, 2017, 68: 218-224. |
Zhu L, Ai Z, Wang D J, et al. Simulation and comparison of H2S and CO2 separation processes using N-formyl morpholine and polyethylene glycol dimethyl ether solvent [J]. CIESC Journal, 2017, 68: 218-224. | |
18 | Mohammed I Y, Samah M, Sabina G, et al. Comparison of SelexolTM and Rectisol® technologies in an integrated gasification combined cycle (IGCC) plant for clean energy production [J]. International Journal of Engineering Research, 2014, 3(12): 742-744. |
19 | Kapetaki Z, Brandani P, Brandani S, et al. Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant [J]. International Journal of Greenhouse Gas Control, 2015, 39: 17-26. |
20 | Bagchi B, Sati S, Shilapuram V. Modelling solubility of CO2 and hydrocarbon gas mixture in ionic liquid ([emim][FAP]) using ASPEN Plus [J]. Journal of Molecular Liquids, 2016, 224: 30-42. |
21 | Wang Y L, Liu X B, Kraslawski A, et al. A novel process design for CO2 capture and H2S removal from the syngas using ionic liquid [J]. Journal of Cleaner Production, 2019, 213: 480-490. |
22 | 霍月洋. 利用Aspen Plus计算气体物质的溶解度[J]. 浙江化工, 2015, 46(4): 48-50. |
Huo Y Y. Simulation and calculation for the solubility of gas by Aspen Plus [J]. Zhejiang Chemical Industry, 2015, 46(4): 48-50. | |
23 | Xu Y M, Schutte R P, Hepler L G. Solubilities of carbon dioxide, hydrogen sulfide and sulfur dioxide in physical solvents [J]. The Canadian Journal of Chemical Engineering, 1992, 70(3): 569-573. |
24 | Ros J A, Brilman D W F, Bernhardsen I M, et al. Describing CO2-Absorbent Properties in AspenPlus® [M]// Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 1087-1092. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[7] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[8] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[9] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[10] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[11] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[12] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[13] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[14] | Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction [J]. CIESC Journal, 2022, 73(8): 3433-3447. |
[15] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||