CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 495-507.DOI: 10.11949/0438-1157.20201091
• Reviews and monographs • Previous Articles Next Articles
RAO Fu1,2(),MA En1,ZHENG Xiaohong2,ZHANG Xihua1(),LYU Weiguang2,YAO Peifan1,SUN Zhi1,2()
Received:
2020-08-03
Revised:
2020-10-30
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHANG Xihua,SUN Zhi
饶富1,2(),马恩1,郑晓洪2,张西华1(),吕伟光2,姚沛帆1,孙峙1,2()
通讯作者:
张西华,孙峙
作者简介:
饶富(1994—),男,硕士研究生,基金资助:
CLC Number:
RAO Fu, MA En, ZHENG Xiaohong, ZHANG Xihua, LYU Weiguang, YAO Peifan, SUN Zhi. Research advances on nickel extraction technology from nickel sulfide ore[J]. CIESC Journal, 2021, 72(1): 495-507.
饶富, 马恩, 郑晓洪, 张西华, 吕伟光, 姚沛帆, 孙峙. 硫化镍矿中镍提取技术研究进展[J]. 化工学报, 2021, 72(1): 495-507.
Add to citation manager EndNote|Ris|BibTeX
69 | Johnson D B. Biomining—biotechnologies for extracting and recovering metals from ores and waste materials[J]. Current Opinion in Biotechnology, 2014, 30: 24-31. |
70 | Rawlings D E. Microbially-assisted dissolution of minerals and its use in the mining industry[J]. Pure and Applied Chemistry, 2004, 76(4): 847-859. |
71 | 王金庆, 严群, 梁长利, 等. 硫化镍矿生物浸出研究进展[J]. 金属矿山, 2015, 44: 85-91. |
Wang J Q, Yan Q, Liang C L, et al. Research progress on the bioleaching of nickel sulfide ore [J]. Metal Mine, 2015, 44: 85-91. | |
72 | Razzell W E, Trussell P C. Isolation and properties of an iron-oxidizing thiobacillus[J]. Journal of Bacteriology, 1963, 85(3): 595-603. |
73 | Temple K L, Colmer A R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans[J]. Journal of Bacteriology, 1951, 62(5): 605. |
74 | 乔繁盛. 浸矿技术[M]. 北京: 原子能出版社, 1994: 417-422. |
Qiao F S. Leaching Technology[M]. Beijing: Atomic Energy Press, 1994: 417-422. | |
75 | Dopson M, Lindström E B. Potential role of Thiobacillus caldus in arsenopyrite bioleaching[J]. Applied and Environmental Microbiology, 1999, 65(1): 36-40. |
76 | Rawlings D E, Tributsch H, Hansford G S. Reasons why ‘Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology-Reading, 1999, 145(1): 5-14. |
77 | Plumb J J, McSweeney N J, Franzmann P D. Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore[J]. Minerals Engineering, 2008, 21(1): 93-99. |
78 | Clark D A, Norris P R. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species[J]. Microbiology, 1996, 142(4): 785-790. |
79 | Coram N J, Rawlings D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40℃[J]. Applied and Environmental Microbiology, 2002, 68(2): 838-845. |
1 | Reck B K, Müller D B, Rostkowski K, et al. Anthropogenic nickel cycle: insights into use, trade, and recycling[J]. Environmental Science & Technology, 2008, 42(9): 3394-3400. |
2 | Myung S T, Maglia F, Park K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. |
3 | Sun Q, Cheng H, Mei X, et al. Efficient synchronous extraction of nickel, copper, and cobalt from low–nickel matte by sulfation roasting‒water leaching process[J]. Scientific Reports, 2020, 10(1): 1-14. |
4 | Ilyas S, Srivastava R R, Kim H, et al. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process[J]. Separation and Purification Technology, 2020, 232: 115971. |
5 | Zeng X, Xu H, Tian Y, et al. Situation and sustainable development strategy of China's nickel resources industry[J]. Resour. Ind., 2015, 17(4): 94-99. |
6 | World Metal Statistics.World Metal Statistics Yearbook[R]. London: World Bureau of Metal Statistics, 2013: 11-17. |
7 | Nakajima K, Daigo I, Nansai K, et al. Global distribution of material consumption: nickel, copper, and iron[J]. Resources, Conservation and Recycling, 2018, 133: 369-374. |
8 | Li J, Li D, Xu Z, et al. Selective leaching of valuable metals from laterite nickel ore with ammonium chloride-hydrochloric acid solution[J]. Journal of Cleaner Production, 2018, 179: 24-30. |
9 | Farrokhpay S, Filippov L. Challenges in processing nickel laterite ores by flotation[J]. International Journal of Mineral Processing, 2016, 151: 59-67. |
10 | Habib K, Hansdóttir S T, Habib H. Critical metals for electromobility: global demand scenarios for passenger vehicles, 2015–2050[J]. Resources, Conservation and Recycling, 2020, 154: 104603. |
11 | Mudd G M. Global trends and environmental issues in nickel mining: sulfides versus laterites[J]. Ore Geology Reviews, 2010, 38(1/2): 9-26. |
12 | Wang F, Liu F, Elliott R, et al. Solid state extraction of nickel from nickel sulfide concentrates[J]. Journal of Alloys and Compounds, 2020, 822: 153582. |
13 | Cameron R A, Lastra R, Mortazavi S, et al. Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH[J]. Hydrometallurgy, 2009, 97(3/4): 213-220. |
14 | Hedrich S, Kraemer D, Junge M, et al. Bioprocessing of oxidized platinum group element (PGE) ores as pre-treatment for efficient chemical extraction of PGE[J]. Hydrometallurgy, 2020, 196: 105419. |
15 | Crundwell F, Moats M, Ramachandran V, et al. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals[M]. Elsevier, 2011: 147-158 |
16 | Xia F, Pring A, Brugger J. Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel[J]. Minerals Engineering, 2012, 27: 11-19. |
17 | Huang K, Li Q, Chen J. Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates[J]. Minerals Engineering, 2007, 20(7): 722-728. |
18 | Zhang P, Guo Q, Wei G, et al. Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching[J]. Hydrometallurgy, 2015, 157: 149-158. |
19 | Xiao W, Liu X, Zhao Z. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure[J]. Hydrometallurgy, 2020, 194: 105353. |
20 | Zhen S, Yan Z, Zhang Y, et al. Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite[J]. Hydrometallurgy, 2009, 96(4): 337-341. |
21 | Ke J, Li H. Bacterial leaching of nickel-bearing pyrrhotite[J]. Hydrometallurgy, 2006, 82(3/4): 172-175. |
22 | Guezennec A G, Bru K, Jacob J, et al. Co-processing of sulfidic mining wastes and metal-rich post-consumer wastes by biohydrometallurgy[J]. Minerals Engineering, 2015, 75: 45-53. |
23 | Barnes S J, Osborne G A, Cook D, et al. The Santa Rita nickel sulfide deposit in the Fazenda Mirabela intrusion, Bahia, Brazil: geology, sulfide geochemistry, and genesis[J]. Economic Geology, 2011, 106(7): 1083-1110. |
24 | Vignes A. Extractive Metallurgy 2: Metallurgical Reaction Processes[M]. John Wiley & Sons, 2013: 273-295. |
25 | Davis J R. ASM specialty handbook: nickel, cobalt, and their alloys[J]. ASM International, 2000: 38(11): 6206. |
26 | Rao G V. Nickel and cobalt ores: flotation[M]// Encyclopedia of Separation Science.Academic Press, 2000: 3491-3500. |
27 | Evans H T, Clark J R. The crystal structure of bartonite, a potassium iron sulfide, and its relationship to pentlandite and djerfisherite[J]. American Mineralogist, 1981, 66(3/4): 376-384. |
28 | 华一新. 有色金属概论[M]. 北京: 冶金工业出版社, 2007: 56-60. |
Hua Y X. Introduction to Nonferrous Metals [M]. Beijing: Metallurgical Industry Press, 2007: 56-60. | |
29 | 陈殿芬. 我国一些铜镍硫化物矿床主要金属矿物的特征[J]. 岩石矿物学杂志, 1995, 14(4): 345-354. |
Chen D F. Characteristics of major metal minerals in some copper-nickel sulfide deposits in China [J]. Chinese Journal of Rock and Mineralogy, 1995, 14 (4): 345-354. | |
30 | 芮会超, 焦建刚, 靳树芳. 金川铜镍硫化物矿床磁黄铁矿矿物学特征及成因意义[J]. 矿床地质, 2017, 36(2): 501-514. |
Rui H C, Jiao J G, Jin S F. The mineralogical characteristics and genetic significance of pyrite in the Jinchuan copper-nickel sulfide deposit [J]. Deposit Geology, 2017, 36 (2): 501-514. | |
31 | 陈家镛. 湿法冶金手册[M]. 北京: 冶金工业出版社, 2005: 700-702. |
Chen J Y. Handbook of Hydrometallurgy [J]. Beijing: Metallurgical Industry Press, 2005: 700-702. | |
32 | Shimakage K, Hoshi M, Ejima T. Kinetics and mechanism of the ammonia pressure leaching of laterite ore containing nickel[J]. Transactions of the Japan Institute of Metals, 1974, 15(2): 121-128. |
33 | Meng X, Han K N. The principles and applications of ammonia leaching of metals—a review[J]. Mineral Processing and Extractive Metullargy Review, 1996, 16(1): 23-61. |
34 | Forward F A, Mackiw V N. Chemistry of the ammonia pressure process for leaching Ni, Cu, and Co from Sherritt Gordon sulphide concentrates[J]. JOM, 1955, 7(3): 457-463. |
35 | Budac J J, Kofluk R, Belton D. Reductive leach process for improved recovery of nickel and cobalt in the Sherritt hexammine leach process[C]//Proceedings of the 39th Annual Hydrometallurgy Meetings held in conjunction with the 48th Annual Conference of Metallurgists of CIM. Canadian Institute of Mining and Metallurgy Sudbury, Ontario, Canada, 2009: 77-85. |
36 | Kerfoot D G E, Cordingley P D. The acid pressure leach process for nickel and cobalt laterite (Part Ⅱ): Review of operations at Fort Saskatchewan[C]//Proceedings of the Nickel-Cobalt 97 International Symposium. Canada, 1997: 17-20. |
37 | 杨显万, 邱定蕃. 湿法冶金[M]. 北京: 冶金工业出版社, 1998: 240-257. |
Yang X W, Qiu D F. Hydrometallurgy [J]. Beijing: Metallurgical Industry Press, 1998: 240-257. | |
38 | Smyres G A, Lei K P V, Carnahan T G. Hydrochloric Acid-oxygen Leaching and Metal Recovery from a Copper-nickel Bulk Sulfide Concentrate[M]. US Department of the Interior, Bureau of Mines, 1985: 5-13. |
39 | Huang K, Li Q, Chen J. Recovery of copper, nickel and cobalt from acidic pressure leaching solutions of low-grade sulfide flotation concentrates[J]. Minerals Engineering, 2007, 20(7): 722-728. |
40 | 朱军, 白苗苗, 李凡, 等. 硫化镍矿氧压浸出试验研究[J]. 矿冶工程, 2016, 36(2): 71-74. |
Zhu J, Bai M M, Li F, et al. Oxygen pressure leaching test of nickel sulfide ore [J]. Mining and Metallurgical Engineering, 2016, 36 (2): 71-74. | |
41 | 谢铿, 刘三平, 王海北. 赞比亚某硫化镍精矿氧压酸浸研究[J]. 有色金属 (冶炼部分), 2019, (10): 6-10. |
Xie Y, Liu S P, Wang H B. et al. Study on oxygen pressure acid leaching of a nickel sulfide concentrate in zambia [J]. Nonferrous Metals (Smelting Section), 2019, (10): 6-10. | |
42 | Amer A M. Investigation of the direct hydrometallurgical processing of mechanically activated complex sulphide ore, Akarem area, Egypt[J]. Hydrometallurgy, 1995, 38(3): 225-234. |
43 | 李忠国, 翟秀静, 邱竹贤, 等. 硫化镍精矿常压浸出研究[J]. 有色矿冶, 2005, (5): 28-30. |
Li Z G, Zhai X J, Qiu Z X, et al. Research on atmospheric leaching of nickel sulfide concentrate [J]. Nonferrous Mining & Metallurgy, 2005, (5): 28-30. | |
80 | Escobar B, Huenupi E, Godoy I, et al. Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70℃[J]. Biotechnology Letters, 2000, 22(3): 205-209. |
81 | Yoshida N, Nakasato M, Ohmura N, et al. Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+[J]. Current Microbiology, 2006, 53(5): 406-411. |
82 | Brierley C L, Brierley J A. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring[J]. Canadian Journal of Microbiology, 1973, 19(2): 183-188. |
83 | Waksman S A, Joffe J S. Microörganisms concerned in the oxidation of sulfur in the soil(Ⅱ): Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil[J]. Journal of bacteriology, 1922, 7(2): 239. |
84 | Qiu M, Xiong S, Zhang W, et al. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture[J]. Minerals Engineering, 2005, 18(9): 987-990. |
85 | Bevilaqua D, Diéz-Perez I, Fugivara C S, et al. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy[J]. Bioelectrochemistry, 2004, 64(1): 79-84. |
86 | Giaveno A, Lavalle L, Chiacchiarini P, et al. Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans[J]. Hydrometallurgy, 2007, 89(1/2): 117-126. |
87 | Torma A E. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans[J]. Revue Canadienne de Biologie, 1971, 30(3): 209. |
88 | Santos L R G, Barbosa A F, Souza A D, et al. Bioleaching of a complex nickel–iron concentrate by mesophile bacteria[J]. Minerals Engineering, 2006, 19(12): 1251-1258. |
89 | Nakazawa H, Hashizume T, Sato H. Effect of silver ions on bacterial leaching of flotation concentrate of copper-nickel sulfide ores[J]. Journal of the Mining and Materials Processing Institute of Japan, 1993, 109(2): 81-85. |
90 | Yang C, Qin W, Lai S, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore[J]. Hydrometallurgy, 2011, 106(1/2): 32-37. |
91 | Cruz F L S, Oliveira V A, Guimarães D, et al. High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications[J]. Hydrometallurgy, 2010, 105(1/2): 103-109. |
44 | Li X M, Chen J Y, Kammel R, et al. Application of attrition grinding in acid leaching of nickel sulfide concentrate[J]. 1997, (4): 144-148. |
45 | Xie Y, Xu Y, Yan L, et al. Recovery of nickel, copper and cobalt from low-grade Ni–Cu sulfide tailings[J]. Hydrometallurgy, 2005, 80(1/2): 54-58 |
46 | 黄欢, 张国范, 刘德志, 等. 硫化镍精矿-软锰矿在酸性条件下的协同浸出[J]. 有色金属工程, 2019, (6): 55-60. |
Huang H, Zhang G F, Liu D Z, et al. Cooperative leaching of nickel sulfide concentrate-pyromanganese ore under acidic conditions [J]. Nonferrous Metals Engineering, 2019, (6): 55-60. | |
47 | Lakshmanan V I, Sridhar R, Chen J, et al. A mixed-chloride atmospheric leaching process for the recovery of base metals from sulphide materials[J]. Transactions of the Indian Institute of Metals, 2017, 70(2): 463-470. |
48 | Xing Z, Cheng G, Yang H, et al. Mechanism and application of the ore with chlorination treatment: a review[J]. Minerals Engineering, 2020, 154: 106404. |
49 | Mukherjee T K, Gupta C K. Base metal resource processing by chlorination[J]. Mineral Procesing and Extractive Metallurgy Review, 1983, 1(1/2): 111-153. |
50 | Mu W, Cui F, Xin H, et al. A novel process for simultaneously extracting Ni and Cu from mixed oxide-sulfide copper-nickel ore with highly alkaline gangue via FeCl3∙ 6H2O chlorination and water leaching[J]. Hydrometallurgy, 2020, 191: 105187. |
51 | Li G, Zou X, Cheng H, et al. A novel ammonium chloride roasting approach for the high-efficiency Co-sulfation of nickel, cobalt, and copper in polymetallic sulfide minerals[J]. Metallurgical and Materials Transactions B, 2020, 51: 2769–2784. |
52 | Mukherjee T K, Menon P R, Shukla P P, et al. Chloridizing roasting process for a complex sulfide concentrate[J]. Jom, 1985, 37(6): 29-33. |
53 | Imideev V A, Aleksandrov P V, Medvedev A S, et al. Nickel sulfide concentrate processing using low-temperature roasting with sodium chloride[J]. Metallurgist, 2014, 58(5/6): 353-359. |
54 | Xu C, Cheng H, Li G, et al. Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(4): 377-385. |
55 | Cui F, Mu W, Zhai Y, et al. The selective chlorination of nickel and copper from low-grade nickel-copper sulfide-oxide ore: mechanism and kinetics[J]. Separation and Purification Technology, 2020, 239: 116577. |
56 | Li G, Xiong X, Wang L, et al. Sulfation roasting of nickel oxide–sulfide mixed ore concentrate in the presence of ammonium sulfate: experimental and DFT studies[J]. Metals, 2019, 9(12): 1256. |
57 | 李光石. 硫化镍矿硫酸化焙烧反应机理及其调控机制的研究[D]. 上海: 上海大学, 2018. |
Li G S. Study on the reaction mechanism and control of the sulfide roasting of nickel sulfide ore[D]. Shanghai: Shanghai University, 2018 | |
58 | Thornhill P G. Method of roasting metal sulfide concentrates in a fluidized bed: US2813015[P]. 1957-11-12. |
59 | Yu D, Utigard T A, Barati M. Fluidized bed selective oxidation-sulfation roasting of nickel sulfide concentrate(Part Ⅱ): Sulfation roasting[J]. Metallurgical and Materials Transactions B, 2014, 45(2): 662-674. |
60 | Liu X, Feng Y, Li H, et al. Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(5): 377-383. |
61 | 刘欣伟, 冯雅丽, 李浩然, 等. 硫酸铵焙烧法浸出镍磁黄铁矿中有价金属[J]. 中国有色金属学报, 2012, 22(5): 1520-1526. |
Liu X W, Feng Y L, Li H R, et al. Leaching of valuable metals from nickel pyrrhotite by ammonium sulfate roasting method[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(5): 1520-1526.. | |
62 | Cui F, Mu W, Wang S, et al. Sodium sulfate activation mechanism on co-sulfating roasting to nickel-copper sulfide concentrate in metal extractions, microtopography and kinetics[J]. Minerals Engineering, 2018, 123: 104-116. |
63 | Sukhomlinov D, Virtanen O, Latostenmaa P, et al. Impact of MgO and K2O on slag-nickel matte equilibria[J]. Journal of Phase Equilibria and Diffusion, 2019, 40(6): 768-778. |
64 | 小博尔德.镍: 提取冶金 [M]. 金川有色金属公司, 译. 北京: 冶金工业出版社, 1977: 44-56. |
Boulder Jr. Nickel: Extractive Metallurgy [M]. Jinchuan Non-Ferrous Metals Company, trans. Beijing: Metallurgical Industry Press, 1977: 44-56. | |
65 | 陈新民. 火法冶金过程物理化学[M]. 北京: 冶金工业出版杜, 1994: 192-202. |
Chen X M. Pyrometallurgical Process Physical Chemistry [M]. Beijing: Metallurgical Industry Press, 1994: 192-202. | |
66 | Mahmoud A, Cézac P, Hoadley A F A, et al. A review of sulfide minerals microbially assisted leaching in stirred tank reactors[J]. International Biodeterioration & Biodegradation, 2017, 119: 118-146. |
67 | Vainshtein M. Bioleaching of metals as eco-friendly technology[M]//Current Environmental Issues and Challenges. Springer, Dordrecht, 2014: 197-205. |
68 | Johnson D B, Grail B M, Hallberg K B. A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores[J]. Minerals, 2013, 3(1): 49-58. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[3] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[4] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[5] | Huanjuan ZHAO, Jing LIU, Donglei ZHOU, Min LIN. Inhibition effect of porous materials on hydrogen detonation [J]. CIESC Journal, 2023, 74(2): 968-976. |
[6] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[7] | Chenyu SU, Ying YANG, Xingfu SONG. Selective electro-oxidation of bromide ion in potassium-extracted brine from rock salt mines [J]. CIESC Journal, 2022, 73(7): 3007-3017. |
[8] | Xiaolan WEI, Wenjie QI, Jing DING, Jianfeng LU, Weilong WANG, Shule LIU. Effect of valence state of chromium in molten chloride salt on corrosivity of nickel-based alloy [J]. CIESC Journal, 2022, 73(7): 3182-3192. |
[9] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[10] | Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614. |
[11] | Pengzhi BEI, Wenying LI. An energy decomposition analysis-based extractant selection [J]. CIESC Journal, 2022, 73(2): 739-746. |
[12] | Tengfei GAO, Guoxuan LI, Zhigang LEI. Solvents selection for separation of biphenyl from FCC diesel: experimental and computational thermodynamics [J]. CIESC Journal, 2022, 73(12): 5314-5323. |
[13] | Wei YANG, Yujie WANG, Kaibin FANG, Hanbo ZOU, Shengzhou CHEN, Zili LIU. Influence of cobalt-manganese ratio adjustment on the properties of LiNi0.8Co0.10-y Mn0.05+y Al0.05O2 materials [J]. CIESC Journal, 2022, 73(12): 5615-5624. |
[14] | Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy [J]. CIESC Journal, 2022, 73(1): 85-96. |
[15] | Hu LI, Zisheng ZHANG, Jiuzhou CHEN, Haoliang SHI, Yongjie SHI, Hong LI, Xingang LI, Xin GAO. Preparation of novel silver-based deep eutectic solvent and its application in separation of 1-hexene/n-hexane [J]. CIESC Journal, 2021, 72(8): 4204-4214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||