CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1987-1997.DOI: 10.11949/0438-1157.20201169
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
GU Xin1(),SONG Shuai1,ZHANG Dabo2,FANG Yunge1,CHEN Weijie1,WANG Yongqing1()
Received:
2020-08-17
Revised:
2020-10-29
Online:
2021-04-05
Published:
2021-04-05
Contact:
WANG Yongqing
古新1(),宋帅1,张大波2,方运阁1,陈卫杰1,王永庆1()
通讯作者:
王永庆
作者简介:
古新(1978—),男,博士,教授,基金资助:
CLC Number:
GU Xin, SONG Shuai, ZHANG Dabo, FANG Yunge, CHEN Weijie, WANG Yongqing. Analysis of heat transfer performance and mechanism of a double torsion flow heat exchanger[J]. CIESC Journal, 2021, 72(4): 1987-1997.
古新, 宋帅, 张大波, 方运阁, 陈卫杰, 王永庆. 一种双扭转流换热器壳程传热性能与机理分析[J]. 化工学报, 2021, 72(4): 1987-1997.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
筒体直径D/mm | 185 |
换热管长度L/mm | 200 |
换热管数量 | 37 |
换热管外径d0/mm | 19 |
换热管间距tp/mm | 25 |
换热管排列方式 | 正三角形 |
折流板宽度W/mm | 80 |
折流板倾斜角度θ/(°) | 45 |
折流板间距B/mm | 100 |
Table 1 Basic structure parameters of the heat exchanger model
参数 | 数值 |
---|---|
筒体直径D/mm | 185 |
换热管长度L/mm | 200 |
换热管数量 | 37 |
换热管外径d0/mm | 19 |
换热管间距tp/mm | 25 |
换热管排列方式 | 正三角形 |
折流板宽度W/mm | 80 |
折流板倾斜角度θ/(°) | 45 |
折流板间距B/mm | 100 |
名称 | 规格与型号 |
---|---|
转子流量计 | 型号LZB-50,精度2.0级 |
潜水泵 | 型号MJ-NS 6500,最大扬程3.5 m |
示踪粒子 | 型号10089(球型),密度0.00105~0.00115 kg·m-3 |
Table 2 Summary of experimental instruments
名称 | 规格与型号 |
---|---|
转子流量计 | 型号LZB-50,精度2.0级 |
潜水泵 | 型号MJ-NS 6500,最大扬程3.5 m |
示踪粒子 | 型号10089(球型),密度0.00105~0.00115 kg·m-3 |
1 | Bhowmik C, Bhowmik S, Ray A. Optimal green energy source selection: an eclectic decision[J]. Energy & Environment, 2020, 31(5): 842-859. |
2 | 胡博然, 夏志坚. 中国换热器产业发展现状及前景展望[J]. 计算机产品与流通, 2017, (12): 149. |
Hu B R, Xia Z J. The development status and prospects of China's heat exchanger industry[J]. Computer Products and Circulation, 2017, (12): 149. | |
3 | 黄蕾, 黄庆军. 世界换热器产业发展现状综述[J]. 石油和化工设备, 2011, 14(3):5-10. |
Huang L, Huang Q J. Status and trends of world's heat exchanger industries[J]. Petro & Chemical Equipment, 2011, 14(3):5-10. | |
4 | Zhang D, Li Y F, Sun H F, et al. Energy recovery enhancement of heat exchanger network by mixing and azeotrope formation[J]. Chemical Engineering Science, 2020, 228: 115992. |
5 | Zaino N L, Steele K M, Donelan J M, et al. Energy consumption does not change after selective dorsal rhizotomy in children with spastic cerebral palsy[J]. Developmental Medicine & Child Neurology, 2020, 62(9): 1047-1053. |
6 | Jahanbin A. Thermal performance of the vertical ground heat exchanger with a novel elliptical single U-tube[J]. Geothermics, 2020, 86: 101804. |
7 | 齐洪洋, 高磊, 张莹莹, 等. 管壳式换热器强化传热技术概述[J]. 压力容器, 2012, 29(7): 73-78. |
Qi H Y, Gao L, Zhang Y Y, et al. Overview of the shell and tube heat exchangers about heat transfer enhancement technology[J]. Pressure Vessel Technology, 2012, 29(7): 73-78. | |
8 | Kong L J, Liu Z G, Jia L, et al. Experimental study on flow and heat transfer characteristics at onset of nucleate boiling in micro pin fin heat sinks[J]. Experimental Thermal and Fluid Science, 2020, 115: 109946. |
9 | Sheikholeslami M, Gorji-Bandpy M, Ganji D D. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 444-469. |
10 | 汪波, 茅靳丰, 耿世彬, 等. 国内换热器的研究现状与展望[J]. 制冷与空调, 2010, 24(5): 61-65. |
Wang B, Mao J F, Geng S B, et al. Present state and perspectives of research on domestic heat-exchanger[J]. Refrigeration & Air Conditioning, 2010, 24(5): 61-65. | |
11 | 张奇. 如何提高换热器的换热效率[J]. 中国金属通报, 2019, (11): 160-161. |
Zhang Q. How to improve the heat transfer efficiency of heat exchangers [J]. China Metal Bulletin, 2019, (11): 160-161. | |
12 | 王英双, 刘志春, 黄素逸, 等. 新型折流杆换热器的流动与传热数值模拟[J]. 化工进展, 2010, 29(7): 1205-1208. |
Wang Y S, Liu Z C, Huang S Y, et al. Fluid flow and heat transfer in rod baffle heat exchanger shell side[J]. Chemical Industry and Engineering Progress, 2010, 29(7): 1205-1208. | |
13 | Ma L, Wang K, Liu M S, et al. Numerical study on performances of shell-side in trefoil-hole and quatrefoil-hole baffle heat exchangers[J]. Applied Thermal Engineering, 2017, 123: 1444-1455. |
14 | 李亚子, 雷勇刚, 吕永康, 等. 斜百叶片支撑多管束受限外流传热和阻力特性[J]. 高校化学工程学报, 2017, 31(3): 579-585. |
Li Y Z, Lei Y G, Lyu Y K, et al. Heat transfer and flow resistance of confined external flow in louver baffle supported tube bundles[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 579-585. | |
15 | 马璐, 王珂, 王永庆, 等. 帘式折流片换热器壳程热力特性的数值研究[J]. 化学工程, 2016, 44(12): 26-30. |
Ma L, Wang K, Wang Y Q, et al. Numerical research on thermodynamic characteristics in shell-side of shell-and-tube heat exchanger with shutter baffles[J]. Chemical Engineering (China), 2016, 44(12): 26-30. | |
16 | 古新, 郝建设, 刘敏珊, 等. 帘式折流片换热器壳程流体流动和传热周期性充分发展区域长度界定研究[J]. 高校化学工程学报, 2014, 28(2): 240-245. |
Gu X, Hao J S, Liu M S, et al. Research on define the length of periodic fully developed region for fluid flow and heat transfer characteristics in shell side of shutter baffle heat exchanger[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 240-245. | |
17 | 朱培纳. 帘式折流片换热器入口流场均化及其壳程结构优化研究[D]. 郑州: 郑州大学, 2013. |
Zhu P N. Research on the flow field homogenization at entrance and the shell structure optimization of the shutter baffle heat exchanger[D]. Zhengzhou: Zhengzhou University, 2013. | |
18 | Mukherjee R, 刘民强. 双弓形折流板管壳换热器[J]. 石油化工设备技术, 1993, 14(5): 17-20. |
Mukherjee R, Liu M Q. Shell and tube heat exchanger with double-bow baffles [J]. Petro-Chemical Equipment Technology, 1993, 14(5): 17-20. | |
19 | 赵景玉, 黄英, 赵石军. 大型管壳式换热器的设计与制造[J]. 压力容器, 2015, 32(3): 36-44, 75. |
Zhao J Y, Huang Y, Zhao S J. Designing and fabrication of super- sized tubular heat exchanger[J]. Pressure Vessel Technology, 2015, 32(3): 36-44, 75. | |
20 | 高宏宇. 曲面弓形折流板换热器的研究[D]. 北京: 北京化工大学, 2010. |
Gao H Y. Research of curved baffle heat exchanger[D]. Beijing: Beijing University of Chemical Technology, 2010. | |
21 | 曾志伟, 董云风. 管壳式换热器单弓形折流板换新技术分析[J]. 广东造船, 2019, 38(6): 81-84. |
Zeng Z W, Dong Y F. Replacement of single segmental baffle for tube-shell type heat exchanger[J]. Guangdong Shipbuilding, 2019, 38(6): 81-84. | |
22 | 赵书培, 谭国锋, 王珂, 等. 扇叶型折流板换热器壳程性能及传热机理的数值模拟[J]. 低温工程, 2018, (5): 33-38, 66. |
Zhao S P, Tan G F, Wang K, et al. Numerical simulation of shell side performance and heat transfer mechanism of blade baffle heat exchanger[J]. Cryogenics, 2018, (5): 33-38, 66. | |
23 | 杨程, 杨红平, 王涛. 连续拼接型螺旋折流板换热器壳程内流场与温度场模拟研究[J]. 热能动力工程, 2017, 32(10): 16-23, 138. |
Yang C, Yang H P, Wang T. Numerical study of the flow and temperature field at the shell side of a continuous put-together type helical baffle heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(10): 16-23, 138. | |
24 | 王秋旺. 螺旋折流板管壳式换热器壳程传热强化研究进展[J]. 西安交通大学学报, 2004, 38(9): 881-886. |
Wang Q W. Current status and development of shell-side heat transfer enhancement of shell-and-tube heat exchangers with helical baffles[J]. Journal of Xi'an Jiaotong University, 2004, 38(9): 881-886. | |
25 | 古新, 罗元坤, 熊晓朝, 等. 类梯形倾斜折流板管壳式换热器: 106440882B[P]. 2017-02-22. |
Gu X, Luo Y K, Xiong X C, et al. Shell-and-tube heat exchanger with trapezoidal inclined baffle: 106440882B[P]. 2017-02-22. | |
26 | Gu X, Luo Y K, Xiong X C, et al. Numerical and experimental investigation of the heat exchanger with trapezoidal baffle[J]. International Journal of Heat and Mass Transfer, 2018, 127: 598-606. |
27 | 熊晓朝. 扭转流动传热强化机理和新型高效换热器性能研究[D]. 郑州: 郑州大学, 2018. |
Xiong X Z. Research on the enhanced mechanism of torsional flow heat transfer and the performance of a new high-efficiency heat exchanger [D]. Zhengzhou: Zhengzhou University, 2018. | |
28 | 王通通. 基于正交型折流板的新型双扭转流换热器开发与优化[D]. 郑州: 郑州大学, 2020. |
Wang T T. Development and optimization of a new type of double torsion flow heat exchanger based on orthogonal baffles. Zhengzhou: Zhengzhou University, 2020. | |
29 | 古新, 董其伍, 刘敏珊. 周期性模型在管壳式换热器数值模拟中的应用[J]. 热能动力工程, 2008, 23(1): 64-68, 107-108. |
Gu X, Dong Q W, Liu M S. Application of a periodic model in the numerical simulation of shell-and-tube heat exchangers[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23(1): 64-68, 107-108. | |
30 | Kim T. Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks[J]. Annals of Nuclear Energy, 2013, 57: 209-215. |
31 | 陈晓彦, 黄云云, 张朱武, 等. 模拟分析壳程结构参数对缠绕管式换热器综合性能的影响[J]. 福州大学学报(自然科学版), 2020, 48(1): 110-115. |
Chen X Y, Huang Y Y, Zhang Z W, et al. Simulation analysis on the effect of shell side structural parameters on the heat transfer and flow performance of wound-tube heat exchanger[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 110-115. | |
32 | 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906. |
He Y L, Lei Y G, Tian L T, et al. An analysis of three-field synergy on heat transfer augmentation with low penalty of pressure drop[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1904-1906. | |
33 | 陈益萍. 激光多普勒测速技术原理及其应用[J]. 电子世界, 2013, (7): 35-37. |
Chen Y P. Principle of laser Doppler velocimetry and its application[J]. Electronics World, 2013, (7): 35-37. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[4] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[5] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[8] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[9] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[10] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[11] | Sheng CHEN, Mengke WANG, Bona LU, Xiufeng LI, Cenfan LIU, Mengxi LIU, Yiping FAN, Chunxi LU. CFD investigation of effects of feedstock oil vaporization on FCC cracking reaction and coking [J]. CIESC Journal, 2022, 73(7): 2982-2995. |
[12] | Wenlong ZHANG,Shanglei NING,Haibo JIN,Lei MA,Guangxiang HE,Suohe YANG,Xiaoyan GUO,Rongyue ZHANG. Numerical simulation of hydrodynamic parameters with air-acetic acid system using CFD-PBM coupled model [J]. CIESC Journal, 2022, 73(6): 2589-2602. |
[13] | Xiaoping GUAN, Ning YANG. Multiphase drag and population balance models based on mesoscale stability condition [J]. CIESC Journal, 2022, 73(6): 2427-2437. |
[14] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[15] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||