CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1100-1106.DOI: 10.11949/0438-1157.20201206
• Energy and environmental engineering • Previous Articles Next Articles
WEN Yanjun1(),JIANG Chi1,LI Wenxuan1,XIE Yingshen1,WANG Gang1,HOU Yingfei1,2()
Received:
2020-08-24
Revised:
2020-09-27
Online:
2021-02-05
Published:
2021-02-05
Contact:
HOU Yingfei
温燕军1(),蒋驰1,李文轩1,谢颖燊1,王刚1,侯影飞1,2()
通讯作者:
侯影飞
作者简介:
温燕军(1994—),男,硕士研究生, 基金资助:
CLC Number:
WEN Yanjun, JIANG Chi, LI Wenxuan, XIE Yingshen, WANG Gang, HOU Yingfei. Study on reaction force field simulation of pyrolysis interaction among components of oily sludge[J]. CIESC Journal, 2021, 72(2): 1100-1106.
温燕军, 蒋驰, 李文轩, 谢颖燊, 王刚, 侯影飞. 含油污泥各组分热解相互作用的反应力场模拟研究[J]. 化工学报, 2021, 72(2): 1100-1106.
Add to citation manager EndNote|Ris|BibTeX
组分 | 比例/% |
---|---|
链烷烃 | 32.53 |
链烯烃 | 29.34 |
环烷烃 | 28.18 |
单环芳烃 | 6.19 |
多环芳烃 | 3.76 |
Table 1 Petroleum hydrocarbon composition of oily sludge
组分 | 比例/% |
---|---|
链烷烃 | 32.53 |
链烯烃 | 29.34 |
环烷烃 | 28.18 |
单环芳烃 | 6.19 |
多环芳烃 | 3.76 |
产物名称 | 组成/% |
---|---|
CH4 | 16.6 |
C2H2 | 3.1 |
C2H4 | 11.2 |
C2H6 | 10.9 |
C3H4 | 1.9 |
C3H6 | 4.7 |
C3H8 | 5.3 |
H2 | 23.1 |
Table 2 Pyrolysis gas composition of oily sludge
产物名称 | 组成/% |
---|---|
CH4 | 16.6 |
C2H2 | 3.1 |
C2H4 | 11.2 |
C2H6 | 10.9 |
C3H4 | 1.9 |
C3H6 | 4.7 |
C3H8 | 5.3 |
H2 | 23.1 |
组分 | 活化能/(kJ/mol) | |
---|---|---|
混合热解 | 单独热解 | |
链烷烃 | 203.792 | 220.285 |
链烯烃 | 202.337 | 252.908 |
环烷烃 | 172.829 | 319.118 |
Table 3 Activation energy of main components of oily sludge
组分 | 活化能/(kJ/mol) | |
---|---|---|
混合热解 | 单独热解 | |
链烷烃 | 203.792 | 220.285 |
链烯烃 | 202.337 | 252.908 |
环烷烃 | 172.829 | 319.118 |
1 | 李忠卫, 李朝廷. 含油污泥处理技术方案[J]. 油气田环境保护, 2020, 30(1): 40-43. |
Li Z W, Li C T. Technical scheme of oily sludge treatment[J]. Environmental Protection of Oil and Gas Fields, 2020, 30(1): 40-43 | |
2 | Lin B, Alhadj Mallah M M, Huang Q, et al. Effects of temperature and potassium compounds on the transformation behavior of sulfur during pyrolysis of oily sludge[J]. Energy & Fuels, 2017, 31(7): 7004-7014. |
3 | Hu G, Li J, Zhang X, et al. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology[J]. Journal of Environmental Management, 2017, 192: 234-242. |
4 | 郑川江, 舒政, 叶仲斌, 等. 含油污泥处理技术研究进展[J]. 应用化工, 2013, 42(2): 332-336. |
Zheng C J, Shu Z, Ye Z B, et al. Advances in oily sludge treatment research[J]. Applied Chemical Industry, 2013, 42(2): 332-336. | |
5 | Zhou X, Jia H, Fan D, et al. The positive effects of biomass materials as additives on dehydration performance and the pyrolysis system of oily sludge[J]. Petroleum Science and Technology, 2015, 33(21/22): 1829-1836. |
6 | Qin L, Han J, He X, et al. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor[J]. Journal of Environmental Management, 2015, 154: 177-182. |
7 | Gao N, Li J, Quan C, et al. Oily sludge catalytic pyrolysis combined with fine particle removal using a Ni-ceramic membrane[J]. Fuel, 2020, 277: 118134. |
8 | Bao D, Li Z, Liu X, et al. Biochar derived from pyrolysis of oily sludge waste: Structural characteristics and electrochemical properties[J]. Journal of Environmental Management, 2020, 268: 110734. |
9 | 宋薇, 刘建国, 聂永丰. 含油污泥的热解特性研究[J]. 燃料化学学报, 2008, 36(3): 286-290. |
Song W, Liu J G, Nie Y F. Pyrolysis properties of oil sludge[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 286-290. | |
10 | Ma Z, Xie J, Gao N, et al. Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis[J]. Journal of the Energy Institute, 2019, 92(4): 1053-1063. |
11 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
12 | Zhang T, Li X, Guo L, et al. Reaction mechanisms in pyrolysis of hardwood, softwood, and kraft lignin revealed by ReaxFF MD simulations[J]. Energy & Fuels, 2019, 33(11): 11210-11225. |
13 | Pai S J, Lee H W, Han S S. Improved description of a coordinate bond in the ReaxFF reactive force field[J]. The Journal of Physical Chemistry Letters, 2019, 10(22): 7293-7299. |
14 | Kim S, Kumar N, Persson P, et al. Development of a ReaxFF reactive force field for titanium dioxide/water systems[J]. Langmuir, 2013, 29(25): 7838-7846. |
15 | Hong D, Liu L, Huang Y, et al. Chemical effect of H2O on CH4 oxidation during combustion in O2 /H2O environments[J]. Energy & Fuels, 2016, 30(10): 8491-8498. |
16 | Gao M, Li X, Ren C, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858. |
17 | Zheng M, Li X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534. |
18 | Xin L, Liu C, Liu Y, et al. Thermal decomposition mechanism of some hydrocarbons by ReaxFF-based molecular dynamics and density functional theory study[J]. Fuel, 2020, 275: 117885. |
19 | Wang F, Chen L, Geng D, et al. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations[J]. The Journal of Physical Chemistry A, 2018, 122(16): 3971-3979. |
20 | 赵衡振, 陈德珍, 洪鎏, 等. 含油污泥热解工艺及目标产物定位[J]. 石油学报(石油加工), 2020, 36(3): 557-567. |
Zhao H Z, Chen D Z, Hong L, et al. Target products of oily sludges pyrolysis disposal[J]. Acta Petroleum Sinica (Petroleum Processing Section), 2020, 36(3): 557-567. | |
21 | Zhou L, Jiang X, Liu J. Characteristics of oily sludge combustion in circulating fluidized beds[J]. Journal of Hazardous Materials, 2009, 170(1): 175-179. |
22 | 杜林, 王五静, 张彼德, 等. 基于ReaxFF场的矿物绝缘油热解分子动力学模拟[J]. 高电压技术, 2018, 44(2): 488-497. |
Du L, Wang W J, Zhang B D, et al. Molecular dynamics simulation of mineral insulating oil pyrolysis based on force field ReaxFF [J]. High Voltage Engineering, 2018, 44(2): 488-497. | |
23 | 杨肖曦, 李晓宇, 程刚, 等. 含油污泥与煤共热解特性的研究[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 82-85. |
Yang X X, Li X Y, Cheng G, et al. Study on co-pyrolysis performance of oily sludge and coal [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(5): 82-85. | |
24 | Önenç S, Brebu M, Vasile C, et al. Copyrolysis of scrap tires with oily wastes[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 184-189. |
25 | Huo E, Liu C, Xu X, et al. A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of HFO-1336mzz(Z)[J]. International Journal of Refrigeration, 2017, 83: 118-130. |
26 | Mao Q, van Duin A C T, Luo K H. Investigation of methane oxidation by palladium-based catalyst via ReaxFF molecular dynamics simulation[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4339-4346. |
27 | 吕全伟. 含油污泥与废轮胎混合热解工艺的研究[D]. 重庆: 重庆科技学院, 2018. |
Lyu Q W. Study on co-pyrolysis process of oily sludge and waste tires[D]. Chongqing: Chongqing University of Science and Technology, 2018. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[6] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[7] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[8] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[9] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||