28 |
Nicolson A, Paliwal K K. Deep learning for minimum mean-square error approaches to speech enhancement[J]. Speech Communication, 2019, 111: 44-55.
|
29 |
Chen L, Bian M Y, Luo Y G, et al. Real-time identification of the tyre–road friction coefficient using an unscented Kalman filter and mean-square-error-weighted fusion[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(6): 788-802.
|
1 |
Shao M L, Han X Q, Xie Z C, et al. Comparative study on macroinvertebrate communities along a reservoir cascade in Xiangxi River Basin[J]. Acta Ecologica Sinica, 2007, 27(12): 4963-4971.
|
2 |
Huang M Z, Ma Y W, Wan J Q, et al. A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process[J]. Applied Soft Computing, 2015, 27: 1-10.
|
3 |
杨琴, 谢淑云. BP神经网络在洞庭湖氨氮浓度预测中的应用[J]. 水资源与水工程学报, 2006, 17(1): 65-70.
|
|
Yang Q, Xie S Y. Application of BP neural network into predicting NH3-N concentration of Dongting Lake[J]. Journal of Water Resources and Water Engineering, 2006, 17(1): 65-70.
|
4 |
Hong S H, Lee M W, Lee D S, et al. Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks[J]. Biochemical Engineering Journal, 2007, 35(3): 365-370.
|
5 |
Bagheri M, Mirbagheri S A, Ehteshami M, et al. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks[J]. Process Safety and Environmental Protection, 2015, 93: 111-123.
|
6 |
Han H G, Lu W, Hou Y, et al. An adaptive-PSO-based self-organizing RBF neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 104-117.
|
7 |
Li F J, Qiao J F, Han H G, et al. A self-organizing cascade neural network with random weights for nonlinear system modeling[J]. Applied Soft Computing, 2016, 42: 184-193.
|
8 |
王功明, 李文静, 乔俊飞. 基于PLSR自适应深度信念网络的出水总磷预测[J]. 化工学报, 2017, 68(5): 1987-1997.
|
|
Wang G M, Li W J, Qiao J F. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network[J]. CIESC Journal, 2017, 68(5): 1987-1997.
|
30 |
Liu S Q, Wu K, Zhou L J, et al. Modeling a dual-parallel silicon modulator for sinc-shaped nyquist pulse generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(3): 1-8.
|
31 |
Orekhov G, Luque J, Lerner Z F. Closing the loop on exoskeleton motor controllers: benefits of regression-based open-loop control[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6025-6032.
|
9 |
Wang Y X, Han H G, Guo M, et al. A self-organizing deep belief network based on information relevance strategy[J]. Neurocomputing, 2020, 396: 241-253.
|
10 |
Zou Q H, Xiong Q Y, Li Q D, et al. A water quality prediction method based on the multi-time scale bidirectional long short-term memory network[J]. Environmental Science and Pollution Research, 2020, 27(14): 16853-16864.
|
11 |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958.
|
12 |
Shen X, Tian X M, Liu T L, et al. Continuous dropout[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 3926-3937.
|
13 |
Hayashida T, Nishizaki I, Sekizaki S. Structural optimization of deep belief network by evolutionary computation methods including tabu search[J]. Transactions on Machine Learning and Artificial Intelligence, 2018, 6(1): 69.
|
14 |
Han M, Fan J C, Wang J. A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control[J]. IEEE Transactions on Neural Networks, 2011, 22(9): 1457-1468.
|
15 |
Li Y Y, Fang S K, Bai X Y, et al. Parallel design of sparse deep belief network with multi-objective optimization[J]. Information Sciences, 2020, 533: 24-42.
|
16 |
Bao L, Sun X Y, Chen Y, et al. Restricted Boltzmann machine-driven interactive estimation of distribution algorithm for personalized search[J]. Knowledge-Based Systems, 2020, 200: 106030.
|
17 |
Deng J F, Miriyala V P K, Zhu Z F, et al. Voltage-controlled spintronic stochastic neuron for restricted boltzmann machine with weight sparsity[J]. IEEE Electron Device Letters, 2020, 41(7): 1102-1105.
|
18 |
Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
|
19 |
Qin Y, Wang X, Zou J Q. The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3814-3824.
|
20 |
Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
|
21 |
Wang X P, Wang Y Q. A hybrid model of EMD and PSO-SVR for short-term load forecasting in residential quarters[J]. Mathematical Problems in Engineering, 2016, 2016(5): 1-10.
|
22 |
Cheng X X, Dong J, Peng Y, et al. A study of nonstationary wind effects on a full-scale large cooling tower using empirical mode decomposition[J]. Mathematical Problems in Engineering, 2017, 2017: 1-15.
|
23 |
罗曦, 王洪才, 李玉强. 基于CF-EEMD-LSSVR算法的铅冶炼系统温室气体排放的评估与预测[J]. 中南大学学报(自然科学版), 2018, 49(1): 15-21.
|
|
Luo X, Wang H C, Li Y Q. Evaluation and prediction of greenhouse gas emission of lead smelting system based on CF-EEMD-LSSVR[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 15-21.
|
24 |
Liu D, Sun K. Short-term PM2.5 forecasting based on CEEMD-RF in five cities of China[J]. Environmental Science and Pollution Research, 2019, 26(32): 32790-32803.
|
25 |
刘厦, 刘石, 任婷. 基于SA-ELM的声学层析成像温度分布重建算法[J]. 化工学报, 2017, 68(6): 2434-2446.
|
|
Liu S, Liu S, Ren T. SA-ELM based method for reconstructing temperature distribution in acoustic tomography measurement[J]. CIESC Journal, 2017, 68(6): 2434-2446.
|
26 |
张长兴, 王德水, 刘玉峰, 等. 模拟退火算法在岩土热物性参数确定中的应用[J]. 化工学报, 2015, 66(2): 545-552.
|
|
Zhang C X, Wang D S, Liu Y F, et al. Application of simulated annealing algorithm for determining parameters of rock-soil thermal properties[J]. CIESC Journal, 2015, 66(2): 545-552.
|
27 |
Li G, Patel N A, Wang Y Z, et al. Fully actuated body-mounted robotic system for MRI-guided lower back pain injections: initial phantom and cadaver studies[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5245-5251.
|