[1] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[2] |
BAKIROV R, GABRYS B, FAY D. Multiple adaptive mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2016, 96:42-54
|
[3] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进展[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Advances in soft process modeling of chemical processes[J]. CIESC Journal, 2013, 64(3):788-800.
|
[4] |
徐文艳, 王豪. 基于机理建模的聚醋酸乙烯浓度软测量技术[J]. 化工自动化及仪表, 2010, 37(7):70-71. XU W Y, WANG H. Soft sensor technology based on mechanism modeling of polyvinyl acetate concentration[J]. Control and Instruments in Chemical Industry, 2010, 37(7):70-71.
|
[5] |
HAIMI H, MULAS M, CORONA F, et al. Data-derived soft-sensors for biological wastewater treatment plants:an overview[J]. Environmental Modelling &Software, 2013, 47(3):88-107.
|
[6] |
王改堂, 李平, 苏成利. 基于多K最近邻回归算法的软测量模型[J]. 信息与控制, 2011, 40(5):639-645. WANG G T, LI P, SU C L. Soft sensor model based on multi-K nearest neighbor regression algorithm[J]. Information and Control, 2011, 40(5):639-645.
|
[7] |
SHAO W, TIAN X, WANG P, et al. Online soft sensor design using local partial least squares models with adaptive process state partition[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 144:108-121
|
[8] |
韩红桂, 陈治远, 乔俊飞, 等. 基于区间二型模糊神经网络的出水氨氮软测量[J]. 化工学报, 2017, 68(3):1032-1040. HAN H G, CHEN Z Y, QIAO J F, et al. Soft sensor of effluent ammonia nitrogen based on interval-type fuzzy neural network[J]. CIESC Journal, 2017, 68(3):1032-1040.
|
[9] |
田学民, 王强, 邓晓刚. 一种引入动量项的小波神经网络软测量建模方法[J]. 化工学报, 2011, 62(8):2238-2242. TIAN X M, WANG Q, DENG X G. A soft sensor modeling method based on wavelet neural network with impulsive terms[J]. CIESC Journal, 2011, 62(8):2238-2242.
|
[10] |
LIU G, ZHOU D, XU H, et al. Model optimization of SVM for a fermentation soft sensor[J]. Expert Systems with Applications, 2010, 37(4):2708-2713.
|
[11] |
ZHANG Y, LIANG Y. Research on soft sensor based on support vector regression for particle size of grinding and classification process[C]//IEEE Chinese Control and Decision Conference. 2016:6708-6713.
|
[12] |
赵超, 李俊, 戴坤成, 等. 基于自适应加权最小二乘支持向量机的青霉素发酵过程软测量建模[J]. 南京理工大学学报(自然科学版), 2017, 41(1):100-107. ZHAO C, LI J, DAI K C, et al. Soft sensor modeling of penicillin fermentation process based on adaptive weighted least squares support vector machine[J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 2017, 41(1):100-107.
|
[13] |
王平, 田华阁, 田学民, 等. 一种基于增量式SVR学习的在线自适应建模方法[J]. 化工学报, 2010, 61(8):2040-2045. WANG P, TIAN H G, TIAN X M, et al. An online adaptive modeling method based on incremental SVR learning[J]. CIESC Journal, 2010, 61(8):2040-2045.
|
[14] |
CHENG Z, LIU X. Optimal online soft sensor for product quality monitoring in propylene polymerization process[J]. Neurocomputing, 2015, 149:1216-1224
|
[15] |
阎威武, 朱宏栋, 邵惠鹤. 基于最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2003, 15(10):1494-1496. YAN W W, ZHU H D, SHAO H H. Soft sensor modeling based on least squares support vector machine[J]. Journal of System Simulation, 2003, 15(10):1494-1496.
|
[16] |
LI Q, XING L, LIU W, et al. Adaptive soft sensor based on a moving window just-in-time learning LS-SVM for distillation processes[J]. IFAC-PapersOnLine, 2015, 48(28):51-56
|
[17] |
汪世杰, 王振雷, 王昕. 基于JIT-MOSVR的软测量方法及应用[J]. 化工学报, 2017, 68(3):947-955. WANG S J, WANG Z L, WANG X. Soft sensor method based on JIT-MOSVR and its application[J]. CIESC Journal, 2017, 68(3):947-955.
|
[18] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
|
[19] |
王宇红, 狄克松, 张姗, 等. 基于DBN-ELM的聚丙烯熔融指数的软测量[J]. 化工学报, 2016, 67(12):5163-5168. WANG Y H, DI K S, ZHANG S, et al. Soft measurement of polypropylene melt index based on DBN-ELM[J]. CIESC Journal, 2016, 67(12):5163-5168.
|
[20] |
刘瑞兰, 毛佳敏. 基于深度置信网络的4-CBA软测量建模[J]. 计算机工程与应用, 2017, 53(6):227-230. LIU R L, MAO J M. Prediction of 4-CBA soft sensor based on deep belief network[J]. Journal of Computer Engineering and Applications, 2017, 53(6):227-230.
|
[21] |
YAN W, TANG D, LIN Y. A data-driven soft sensor modeling method based on deep learning and its application[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5):4237-4245.
|
[22] |
SHANG C, YANG F, HUANG D, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3):223-233.
|
[23] |
LU M, KANG Y, HAN X, et al. Soft sensor modeling of mill level based on deep belief network[C]//The 26th Chinese Control and Decision Conference.2014:189-193.
|
[24] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
|
[25] |
LIU W, WANG Z, LIU X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234:11-26.
|
[26] |
KHATAMI A, KHOSRAVI A, NGUYEN T, et al. Medical image analysis using wavelet transform and deep belief networks[J]. Expert Systems with Applications, 2017, 86:190-198.
|
[27] |
田旺兰, 李加升. 改进运用深度置信网络的语音端点检测方法[J]. 计算机工程与应用, 2014, 50(20):207-210. TIAN W L, LI J S. Improved voice endpoint detection method using deep belief network[J]. Computer Engineering and Applications, 2014, 50(20):207-210.
|
[28] |
ASUNCION A U, LIU Q, IHLER A T, et al. Learning with blocks:composite likelihood and contrastive divergence[J]. Journal of Machine Learning Research, 2010, 9:33-40.
|
[29] |
BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140.
|
[30] |
孙茂伟, 杨慧中. 基于改进Bagging算法的高斯过程集成软测量建模[J]. 化工学报, 2016, 67(4):1386-1391. SUN M W, YANG H Z. Ensemble soft sensor modeling of Gaussian process based on improved Bagging algorithm[J]. CIESC Journal, 2016, 67(4):1386-1391.
|