[1] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995.
|
[2] |
KOPSINIS Y, MCLAUGHLIN S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4):1351-1362.
|
[3] |
YU L, WANG S, LAI K K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm[J]. Energy Economics, 2008, 30(5):2623-2635.
|
[4] |
李多, 董海鹰, 杨立霞. 基于EMD与ELM的光伏电站短期功率预测[J]. 可再生能源, 2016, 34(2):173-177. LI D, DONG H Y, YANG L X. The short-term power forecasting of photovoltaic plant based on EMD-ELM[J]. Renewable Energy Resources, 2016, 34(2):173-177.
|
[5] |
YANG J H, DOU W. The wind power forecast model based on improved EMD and SVM[J]. Applied Mechanics and Materials, 2014, 694:150-154.
|
[6] |
TANG L, YU L, WANG S, et al. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting[J]. Applied Energy, 2012, 93(5):432-443.
|
[7] |
LIU H, TIAN H Q, LI Y F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J]. Energy Conversion and Management, 2015, 100:16-22.
|
[8] |
SUN W. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China[J]. Energy Conversion and Management, 2016, 114:197-208.
|
[9] |
RUKHIN A L. Approximate entropy for testing randomness[J]. Journal of Applied Probability, 2000, 37(1):88-100.
|
[10] |
XU L S, WANG K Q, WANG L. Gaussian kernel approximate entropy algorithm for analyzing irregularity of time-series[C]//International Conference on Machine Learning and Cybernetics. IEEE, 2005, 9:5605-5608.
|
[11] |
RICHMAN J S, MOORAMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6):H2039.
|
[12] |
ZHANG G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50(1):159-171.
|
[13] |
VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995:52-123
|
[14] |
李知艺, 丁剑鹰, 吴迪, 等. 电力负荷区间预测的集成极限学习机方法[J]. 华北电力大学学报, 2014, 41(2):78-88. LI Z Y, DING J Y, WU D, et al. An ensemble model of the extreme learning machine for load interval prediction[J]. Journal of North China Electric Power University, 2014, 41(2):78-88.
|
[15] |
徐圆, 黄兵明, 贺彦林. 基于改进ELM的递归最小二乘时序差分强化学习算法及应用[J].化工学报, 2017, 68(3):916-924. XU Y, HUANG B M, HE Y L. Recursive least-squares TD learning algorithm based on improved extreme learning machine[J]. CIESC Journal, 2017, 68(3):916-924.
|
[16] |
彭荻, 贺彦林, 徐圆, 等. 基于数据特征提取的AANN-ELM研究及化工应用[J]. 化工学报, 2012, 63(9):2920-2925. PENG D, HE Y L, XU Y, et al. Research and chemical application of data feature extraction based AANN-ELM neural network[J]. CIESC Journal, 2012, 63(9):2920-2925.
|
[17] |
高慧慧, 贺彦林, 彭荻, 等. 基于数据属性划分的递阶ELM研究及化工应用[J]. 化工学报, 2013, 64(12):4348-4353. GAO H H, HE Y L, PENG D, et al. Research and chemical application of data attributes decomposition based hierarchical ELM neural network[J]. CIESC Journal, 2013, 64 (12):4348-4353.
|
[18] |
LU C J, KAO L J. A clustering-based sales forecasting scheme by using extreme learning machine and ensembling linkage methods with applications to computer server[J]. Engineering Applications of Artificial Intelligence, 2016, 55:231-238.
|
[19] |
HAN M, ZHANG R, XU M. Multivariate chaotic time series prediction based on ELM-PLSR and hybrid variable selection algorithm[J]. Neural Processing Letters, 2017, (3):1-13.
|
[20] |
徐圆, 叶亮亮, 朱群雄. 基于动态记忆反馈的改进ELM故障预测方法应用研究[J]. 控制与决策, 2015, 30(4):623-629. XU Y, YE L L, ZHU Q X. Improved dynamic recurrent-based ELM neural network for fault prediction[J]. Control and Decision, 2015, 30(4):623-629.
|
[21] |
RAFIEI M, NIKNAM T, KHOOBAN M H. Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network[J]. IEEE Transactions on Industrial Informatics, 2016, 99:71-79.
|
[22] |
WU Z, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
|
[23] |
WANG Y H, YEH C H, YOUNG H W V, et al. On the computational complexity of the empirical mode decomposition algorithm[J]. Physica A Statistical Mechanics & Its Applications, 2014, 400(2):159-167.
|
[24] |
LIU H, TIAN H Q, LI Y F. Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, wavelet packet-MLP and wavelet packet-ANFIS for wind speed predictions[J]. Energy Conversion & Management, 2015, 89:1-11.
|
[25] |
AKROM N, ISMAIL Z. FEEMD-DR model for forecasting water consumption[J]. Contemporary Engineering Sciences, 2017, 10:273-284.
|
[26] |
TÜFEKCI P. Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods[J]. International Journal of Electrical Power & Energy Systems, 2014, 60:126-140.
|
[27] |
HEYSEM K, PINAR T, SADIK F G. Local and global learning methods for predicting power of a combined gas & steam turbine[C]//Proceedings of the International Conference on Emerging Trends in Computer and Electronics Engineering. ICETCEE, 2012:13-18.
|
[28] |
HE Y L, GENG Z Q, ZHU Q X. Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 151:78-88.
|
[29] |
HIBARA K, OBARA M, HAYASHIDA E, et al. MPC with on-line disturbance model estimation and its application to PTA solvent dehydration tower[J]. Journal of Chemical Industry & Engineering, 2008, 59(7):1657-1664.
|
[30] |
ZHU B, CHEN Z S, HE Y L, et al. A novel nonlinear functional expansion based PLS (FEPLS) and its soft sensor application[J]. Chemometrics & Intelligent Laboratory Systems, 2017, 161:108-117.
|