CIESC Journal ›› 2016, Vol. 67 ›› Issue (12): 5163-5168.DOI: 10.11949/j.issn.0438-1157.20161280

Previous Articles     Next Articles

Melt index prediction of polypropylene based on DBN-ELM

WANG Yuhong1, DI Kesong1, ZHANG Shan1, SHANG Chao2, HUANG Dexian2   

  1. 1 College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
    2 Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2016-09-12 Revised:2016-09-22 Online:2016-12-05 Published:2016-12-05
  • Supported by:

    supported by the Natural Science Foundation of Shandong Province(2013ZRE28089).

基于DBN-ELM的聚丙烯熔融指数的软测量

王宇红1, 狄克松1, 张姗1, 尚超2, 黄德先2   

  1. 1 中国石油大学(华东)信息与控制工程学院, 山东 青岛 266580;
    2 清华大学自动化系, 北京 100084
  • 通讯作者: 王宇红(1970-),男,博士,教授。Wang@upc.edu.cn
  • 基金资助:

    山东省自然科学基金项目(2013ZRE28089)。

Abstract:

To solve the issue of low accuracy of the traditional soft sensor methods of polypropylene melt index, an approach based on deep belief network and extreme learning machine(DBN-ELM)was used to the melt index prediction of polypropylene. Traditional deep belief network(DBN) applied the deep learning to the learning process of the deep neural networks. Different from traditional deep belief network, this approach applied the extreme learning machine algorithm(ELM) to the learning process of DBN to improve the DBN model. Firstly, deep belief network was employed to extract effective features from vibration data by numerical analysis. Then, the effective features were put into the extreme learning machine to proceed model training to obtain the soft sensor model. The experimental validation showed that the method was more accuracy than the traditional method.

Key words: deep belief network, algorithm, extreme learning machine, numerical analysis, feature extraction, experimental validation

摘要:

针对聚丙烯熔融指数软测量中预测精度不高的缺点,将基于深度置信网络-极限学习机(DBN-ELM)的软测量方法应用到熔融指数的软测量中。与传统深度置信网络(DBN)不同的是,该方法将极限学习机(ELM)算法运用到深度置信网络的训练中。首先用深度置信网络对原始数据进行数值分析来提取特征,然后将提取的特征输入到极限学习机中进行训练,得到软测量模型。实验验证表明,与支持向量机和单纯的深度置信网络模型相比,该方法具有更高的测量精度。

关键词: 深度置信网络, 算法, 极限学习机, 数值分析, 特征提取, 实验验证

CLC Number: