[1] |
YI H S, AND J H K, HAN C, et al. Plantwide optimal grade transition for an industrial high-density polyethylene plant[J]. Industrial & Engineering Chemistry Research, 2003, 42(1):91-98.
|
[2] |
AND F T, BIEGLER L T, SALDÍVARGUERRA E. Optimal grade transitions in the high-impact polystyrene polymerization process[J]. Industrial & Engineering Chemistry Research, 2006, 45(18):6175-6189.
|
[3] |
SHARMIN R, SUNDARARAJ U, SHAH S, et al. Inferential sensors for estimation of polymer quality parameters:industrial application of a PLS-based soft sensor for a LDPE plant[J]. Chemical Engineering Science, 2006, 61(19):6372-6384.
|
[4] |
WEI Y J, JIANG Y H, YAN F, et al. Three-stage decomposition modeling for quality of gas-phase polyethylene process based on adaptive hinging hyperplanes and impulse response template[J]. Ind. Eng. Chem. Res., 2013, 52(16):5747-5756.
|
[5] |
马勇, 黄德先, 金以慧.基于支持向量机的软测量建模方法[J].信息与控制, 2004, 33(4):417-421. MA Y, HUANG D X, JIN Y H. Soft-sensor modeling method based on support vector machine[J]. Information and Control, 2004, 33(4):417-421.
|
[6] |
SHANG C, YANG F, HUANG D, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(3):223-233.
|
[7] |
康岩, 卢慕超, 阎高伟.基于DBN-ELM的球磨机料位软测量方法研究[J].仪表技术与传感器, 2015,(4):73-75. KANG Y, LU M C, YAN G W. Soft sensor for ball mill fill level based on DBN-ELM model[J]. Instrument Technique and Sensor, 2015,(4):73-75.
|
[8] |
王平, 田华阁, 田学民. Spheripol-Ⅱ双环管聚丙烯装置动态建模[J]. 计算机与应用化学, 2008, 25(7):827-831. WANG P, TIAN H G, TIAN X M. Dynamic modeling of Spheripol-Ⅱ propylene polymerization in dual-loop reactor[J]. Computers and Applied Chemistry, 2008, 25(7):827-831.
|
[9] |
田华阁, 田学民, 邓晓刚. 基于Kalman-OLS的聚丙烯熔融指数软测量[J]. 控制工程, 2010,(S1):83-86. TIAN H G, TIAN X M, DENG X G. Polypropylene melt index soft sensor based on Kalman-Orthogonal least squares[J]. Control Engineering of China, 2010,(S1):83-86.
|
[10] |
潘泽林, 夏陆岳, 周猛飞, 等. KPCA-SNNs的聚丙烯熔融指数软测量[J]. 计算机与应用化学, 2014, 31(2):203-206. PAN Z L, XIA L Y, ZHOU M F, et al. Soft sensor of polypropylene melt index based on KPCA-SNNs[J]. Computers and Applied Chemistry, 2014, 31(2):203-206.
|
[11] |
LIU X, ZHAO C. Melt index prediction based on fuzzy neural networks and PSO algorithm with online correction strategy-s[J]. AIChE Journal, 2012, 58(4):1194-1202.
|
[12] |
ZHANG M, LIU X.A soft sensor based on adaptive fuzzy neural network and support vector regression for industrial melt index prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 126(15):83-90.
|
[13] |
LI J, LIU X, JIANG H, et al. Melt index prediction by adaptively aggregated RBF neural networks trained with novel ACO algorithm[J]. Journal of Applied Polymer Science, 2012, 125(2):829-1656.
|
[14] |
蒋华琴, 刘兴高.免疫PSO_WLSSVM最优聚丙烯熔融指数预报[J]. 化工学报, 2012, 63(3):866-872. JIANG H Q, LIU X G. Optimal melt index prediction based on ICPSO_WLSSVM algorithm for industrial propylene polymerization[J]. CIESC Journal, 2012, 63(3):866-872.
|
[15] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
|
[16] |
LANGKVIST M, KARLSSON L, LOUTFI A.A review of unsupervised feature learning and deep learning for time series modeling[J]. Pattern Recognition Letters, 2014, 42(1):11-24.
|
[17] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J].Neural Computation, 2006, 18(7):1527-1554.
|
[18] |
张春霞, 姬楠楠, 王冠伟.受限波尔兹曼机[J]. 工程数学学报, 2015,(2):159-173. ZHANG C X, JI N N, WANG G W. Restricted Boltzmann machines[J]. Chinese Journal of Engineering Mathematics, 2015,(2):159-173.
|
[19] |
HUANG G B, ZHOU H, DING X, et al. Extreme learning maching for regression and multiclass classification[J]. IEEE, Transactions on System, Man, and Cybernetics, 2012, 42(2):513-529.
|
[20] |
赵志勇, 李元香, 喻飞, 等.基于极限学习的深度学习算法[J]. 计算机工程与设计, 2015,(4):1022-1026. ZHAO Z Y, LI Y X, YU F, et al. Improved deep learning algorithm based on extreme learning machine[J]. Computer Engineering and Design, 2015,(4):1022-1026.
|
[21] |
HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification.[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2012, 42(42):513-529.
|