CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4064-4072.DOI: 10.11949/0438-1157.20201693
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lingshuai BU1(),Zhiguo QU2,Hongtao XU1(),Man JIN1
Received:
2020-11-27
Revised:
2021-05-17
Online:
2021-08-05
Published:
2021-08-05
Contact:
Hongtao XU
通讯作者:
徐洪涛
作者简介:
卜令帅(1997—),男,硕士研究生,基金资助:
CLC Number:
Lingshuai BU, Zhiguo QU, Hongtao XU, Man JIN. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry[J]. CIESC Journal, 2021, 72(8): 4064-4072.
卜令帅, 屈治国, 徐洪涛, 金满. 相变微胶囊悬浮液储能系统放冷特性实验研究[J]. 化工学报, 2021, 72(8): 4064-4072.
Add to citation manager EndNote|Ris|BibTeX
组别 | 体积流量/ (L·min-1) | 搅拌速率/ (r·min-1) | 入口水温/℃ | 放冷温度区间/℃ |
---|---|---|---|---|
对照组(水) | 6 | 200 | 22 | 9~20 |
实验组1(MPCM) | 4~7 | 200 | 22 | 9~20 |
实验组2(MPCM) | 6 | 0、100、150、200、250 | 22 | 9~20 |
Table 1 Experimental parameter setting
组别 | 体积流量/ (L·min-1) | 搅拌速率/ (r·min-1) | 入口水温/℃ | 放冷温度区间/℃ |
---|---|---|---|---|
对照组(水) | 6 | 200 | 22 | 9~20 |
实验组1(MPCM) | 4~7 | 200 | 22 | 9~20 |
实验组2(MPCM) | 6 | 0、100、150、200、250 | 22 | 9~20 |
搅拌速率/ ( r·min-1) | Ed /kJ | ΔE /kJ | Eloss /kJ | ΔEerr /kJ | (ΔEerr/Ed)/% |
---|---|---|---|---|---|
100 | 1425 | 1510 | 36 | 49 | 3.44 |
150 | 1454 | 1547 | 32 | 61 | 4.19 |
200 | 1478 | 1575 | 30 | 67 | 4.53 |
Table 2 System heat balance analysis with water
搅拌速率/ ( r·min-1) | Ed /kJ | ΔE /kJ | Eloss /kJ | ΔEerr /kJ | (ΔEerr/Ed)/% |
---|---|---|---|---|---|
100 | 1425 | 1510 | 36 | 49 | 3.44 |
150 | 1454 | 1547 | 32 | 61 | 4.19 |
200 | 1478 | 1575 | 30 | 67 | 4.53 |
1 | Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
2 | Delgado M, Lázaro A, Mazo J, et al. Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 253-273. |
3 | Trivedi G V N, Parameshwaran R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519. |
4 | Rodríguez-Cumplido F, Pabón-Gelves E, Chejne-Jana F. Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials[J]. Journal of Energy Storage, 2019, 24: 100821. |
5 | 钟小龙, 刘东, 胥海伦. 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67: 203-209. |
Zhong X L, Liu D, Xu H L. Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67: 203-209. | |
6 | Li W Q, Wan H, Zhang P K, et al. A method to evaluate natural convection heat transfer in microencapsulated phase change material (MPCM) slurry: an experimental study[J]. International Communications in Heat and Mass Transfer, 2018, 96: 1-6. |
7 | 吴兴辉, 杨震, 陈颖, 等. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501. |
Wu X H, Yang Z, Chen Y, et al. Simulation studies on heat transfer characteristics of PCM micro-encapsulated fluids based on discrete phase model[J]. CIESC Journal, 2020, 71(4): 1491-1501. | |
8 | Rezvanpour M, Hasanzadeh M, Azizi D, et al. Synthesis and characterization of micro-nanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage[J]. Materials Chemistry and Physics, 2018, 215: 299-304. |
9 | Li M, Chen M R, Wu Z S. Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube[J]. Applied Energy, 2014, 127: 166-171. |
10 | Deng X J, Wang S G, Wang J H, et al. Analytical modeling of microchannel heat sinks using microencapsulated phase change material slurry for chip cooling[J]. Procedia Engineering, 2017, 205: 2704-2711. |
11 | 张宇, 田丽亭, 岳小棚, 等. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
Zhang Y, Tian L T, Yue X P, et al. Thermal mechanical characteristics analysis of trough solar collector with microencapsulated phase change suspensions[J]. The Chinese Journal of Process Engineering, 2020, 20(3): 276-284. | |
12 | Kong M, Alvarado J L, Thies C, et al. Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems[J]. Energy, 2017, 122: 691-700. |
13 | Zhang Y L. Physical property and thermal physical property of microencapsulated phase change material slurry[J]. Applied Mechanics and Materials, 2011, 110-116: 571-576. |
14 | Pu L, Xu L L, Zhang S Q, et al. Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure[J]. Applied Energy, 2019, 240: 860-869. |
15 | Languri E M, Rokni H B, Alvarado J, et al. Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: a numerical and analytical study[J]. International Journal of Heat and Mass Transfer, 2018, 118: 872-878. |
16 | Li L Y, Zou D Q, Ma X F, et al. Preparation and flow resistance characteristics of novel microcapsule slurries for engine cooling system[J]. Energy Conversion and Management, 2017, 135: 170-177. |
17 | Qiu Z Z, Ma X L, Li P, et al. Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 246-262. |
18 | Ran F M, Chen Y K, Cong R S, et al. Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110101. |
19 | Diaconu B M, Varga S, Oliveira A C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry[J]. Energy, 2010, 35(6): 2688-2693. |
20 | Wang L, Zhang J, Wang Y F, et al. Experimental study on natural convective heat transfer of tube immersed in microencapsulated phase change material suspensions[J]. Applied Thermal Engineering, 2016, 99: 583-590. |
21 | Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. |
22 | Liu L K, Zhu C Q, Fang G Y. Numerical evaluation on the flow and heat transfer characteristics of microencapsulated phase change slurry flowing in a circular tube[J]. Applied Thermal Engineering, 2018, 144: 845-853. |
23 | Ma F, Zhang P. A review of thermo-fluidic performance and application of shellless phase change slurry(1): Preparations, properties and applications[J]. Energy, 2019, 189: 116246. |
24 | Chen L, Wang T, Zhao Y, et al. Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCS)[J]. Energy Conversion and Management, 2014, 79: 317-333. |
25 | Zhang Y L, Wang S F, Rao Z H, et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2726-2733. |
26 | Guo Y H, Zhang X L, Yang L J, et al. The heat transfer of microencapsulated phase change material slurry and its thermal energy storage performance of combined heat and power generating units[J]. Energies, 2017, 10(10): 1662. |
27 | Mert M S, de Mert H H, Sert M. Investigation of thermal energy storage properties of a microencapsulated phase change material using response surface experimental design methodology[J]. Applied Thermal Engineering, 2019, 149: 401-413. |
28 | Bai Z R, Miao Y B, Xu H T, et al. Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry[J]. Thermal Science and Engineering Progress, 2020, 17: 100362. |
29 | Klimeš L, Charvát P, Mastani Joybari M, et al. Computer modelling and experimental investigation of phase change hysteresis of PCMs: the state-of-the-art review[J]. Applied Energy, 2020, 263: 114572. |
30 | Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Applied Thermal Engineering, 2018, 144: 721-725. |
31 | Zhang S, Niu J L. Experimental investigation of microencapsulated phase-change material (MPCM) slurry effective thermal storage capacities[C]//Proceedings of the First International Postgraduate Conference on Infrastructure and Environment. 2009:31-44. |
32 | Zhang S, Niu J L. Two performance indices of TES apparatus: comparison of MPCM slurry vs. stratified water storage tank[J]. Energy and Buildings, 2016, 127: 512-520. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[8] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||