CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4073-4080.DOI: 10.11949/0438-1157.20201736
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Tingjiang LIU1(),Jingxian WANG2,Yang YU1,Yiming ZHAO1,Dapeng HU1()
Received:
2020-12-03
Revised:
2021-02-17
Online:
2021-08-05
Published:
2021-08-05
Contact:
Dapeng HU
通讯作者:
胡大鹏
作者简介:
刘庭江(1995—),男,硕士研究生,基金资助:
CLC Number:
Tingjiang LIU, Jingxian WANG, Yang YU, Yiming ZHAO, Dapeng HU. Research of wall pulsating heat transfer on performance of gas wave refrigeration[J]. CIESC Journal, 2021, 72(8): 4073-4080.
刘庭江, 王静娴, 于洋, 赵一鸣, 胡大鹏. 壁面脉动传热对气波制冷性能影响研究[J]. 化工学报, 2021, 72(8): 4073-4080.
Add to citation manager EndNote|Ris|BibTeX
设备参数 | 数值 |
---|---|
通道长度/mm | 330 |
通道高度/mm | 18 |
通道数量/个 | 72 |
转子半径/mm | 250 |
转速/(r/min) | ≤2800 |
间隙尺寸/mm | ≤0.02 |
HP与HT喷嘴偏角/(°) | 12.5 |
Table 1 Design specifications
设备参数 | 数值 |
---|---|
通道长度/mm | 330 |
通道高度/mm | 18 |
通道数量/个 | 72 |
转子半径/mm | 250 |
转速/(r/min) | ≤2800 |
间隙尺寸/mm | ≤0.02 |
HP与HT喷嘴偏角/(°) | 12.5 |
序号 | 第一层边界层高度/mm | 计算时间 步长/s | 与1号壁面对流换热量 计算结果差异/% |
---|---|---|---|
1 | 0.0015 | 1×10-7 | 0 |
2 | 0.0015 | 1×10-6 | 11.4 |
3 | 0.0015 | 1×10-8 | 0.48 |
4 | 0.0010 | 1×10-7 | 0.21 |
5 | 0.0030 | 1×10-7 | 2.18 |
Table 2 Grid and time step independence test
序号 | 第一层边界层高度/mm | 计算时间 步长/s | 与1号壁面对流换热量 计算结果差异/% |
---|---|---|---|
1 | 0.0015 | 1×10-7 | 0 |
2 | 0.0015 | 1×10-6 | 11.4 |
3 | 0.0015 | 1×10-8 | 0.48 |
4 | 0.0010 | 1×10-7 | 0.21 |
5 | 0.0030 | 1×10-7 | 2.18 |
工况编码 | 膨胀比 | 高压口温度/K | 低温口温度/K | 转速/(r/min) |
---|---|---|---|---|
1 | 1.6 | 288.5 | 276.6 | 2142 |
2 | 1.8 | 287.7 | 270.0 | 2322 |
3 | 2.0 | 285.5 | 265.5 | 2232 |
Table 3 Experimental conditions for temperature measurement
工况编码 | 膨胀比 | 高压口温度/K | 低温口温度/K | 转速/(r/min) |
---|---|---|---|---|
1 | 1.6 | 288.5 | 276.6 | 2142 |
2 | 1.8 | 287.7 | 270.0 | 2322 |
3 | 2.0 | 285.5 | 265.5 | 2232 |
膨胀比 | 转速n/(r/min) | 制冷深度?T/K | |
---|---|---|---|
10 mm | 5 mm | ||
1.6 | 2308 | 11.9 | 12.1 |
1.8 | 2412 | 17.0 | 17.5 |
2.0 | 2520 | 20.3 | 20.7 |
Table 4 The refrigeration depth with defferent thickness
膨胀比 | 转速n/(r/min) | 制冷深度?T/K | |
---|---|---|---|
10 mm | 5 mm | ||
1.6 | 2308 | 11.9 | 12.1 |
1.8 | 2412 | 17.0 | 17.5 |
2.0 | 2520 | 20.3 | 20.7 |
1 | Brocher E, Maresca C, Bournay M H. Fluid dynamics of the resonance tube[J]. Journal of Fluid Mechanics, 1970, 43(2): 369-384. |
2 | Cotterlaz-Rennaz M. Wellhead gas refrigerator fieldstrips condensate [J]. World Oil, 1971:60-61. |
3 | 于洋, 刘培启, 王云磊, 等. 高效气波冷凝装置流动及热力学特性[J]. 化工学报, 2017, 68(8): 3039-3048. |
Yu Y, Liu P Q, Wang Y L, et al. Flow and thermodynamic properties of efficient gas wave refrigeration plant[J]. CIESC Journal, 2017, 68(8): 3039-3048. | |
4 | Shao J, Shen Y N, Feng Y P, et al. Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE [C]//Proceeding of ICESR. 1986. |
5 | 方曜奇, 郑洁. 一种新型制冷技术: 气波制冷机[J]. 辽宁化工, 1990, 19(5): 51-54. |
Fang Y Q, Zheng J. A new refrigeration technology— gas wave refrigerator [J]. Liaoning Chemical Industry, 1990, 19(5): 51-54. | |
6 | 李学来, 郭荣伟. 振荡管内接触面的运动[J]. 空气动力学学报, 2000, 18(1): 120-124. |
Li X L, Guo R W. Movement of contact surface between gases in oscillating tube[J]. Acta Aerodynamica Sinica, 2000, 18(1): 120-124. | |
7 | 代玉强, 胡大鹏, 刘伟, 等. 含有复合阻尼结构的压力波制冷机振荡管内流动分析[J]. 低温与特气, 2003, 21(2): 23-24, 34. |
Dai Y Q, Hu D P, Liu W, et al. The CFD analysis of oscillatory tube equipped with compound damps[J]. Low Temperature and Specialty Gases, 2003, 21(2): 23-24, 34. | |
8 | 刘培启, 徐思远, 王泽武, 等. 偏角对气波制冷机制冷效率的影响及预测[J]. 化工学报, 2014, 65(11): 4271-4277. |
Liu P Q, Xu S Y, Wang Z W, et al. Influence of offset angle on refrigeration efficiency of gas wave refrigerator and prediction for optimal offset angle[J]. CIESC Journal, 2014, 65(11): 4271-4277. | |
9 | 赵文静, 胡大鹏, 刘培启, 等. 端口夹角对气波引射器性能的影响和预测[J]. 化工学报, 2012, 63(2): 572-577. |
Zhao W J, Hu D P, Liu P Q, et al. Influence of port angle on performance of gas wave ejector and prediction for optimal angle[J]. CIESC Journal, 2012, 63(2): 572-577. | |
10 | Hu D P, Li R F, Liu P Q, et al. The loss in charge process and effects on performance of wave rotor refrigerator[J]. International Journal of Heat and Mass Transfer, 2016, 100: 497-507. |
11 | 赵家权, 刘培启, 赵文静, 等. 激波管中非定常凝结现象的数值分析[J]. 化工学报, 2012, 63(4): 1050-1055. |
Zhao J Q, Liu P Q, Zhao W J, et al. Numerical analysis of unsteady condensation during expansion in shock tube[J]. CIESC Journal, 2012, 63(4): 1050-1055. | |
12 | 代玉强. 外循环耗散式气波制冷机理分析与实验研究[D]. 大连: 大连理工大学, 2010. |
Dai Y Q. Principle study and experimental investigation of gas waves refrigeration by aggregated thermal dissipation[D]. Dalian: Dalian University of Technology, 2010. | |
13 | 刘培启, 王海涛, 刘胜, 等. 双开口压力振荡管制冷性能实验研究[J]. 中国科技论文, 2016, 11(6): 717-720. |
Liu P Q, Wang H T, Liu S, et al. Experimental investigation of the performances for the refrigerator with double opening pressure oscillating tube[J]. China Sciencepaper, 2016, 11(6): 717-720. | |
14 | Dai Y Q, Zou J P, Zhu C, et al. Thermodynamic analysis of wave rotor refrigerators[J]. Journal of Thermal Science and Engineering Applications, 2010, 2(2): 021011. |
15 | Hu D P, Li R F, Liu P Q, et al. The design and influence of port arrangement on an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107: 207-217. |
16 | Zhao J, Hu D. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work[J]. Shock Waves, 2017, 27(2): 325-332. |
17 | 赵家权. 自增压冷交换耗散式气波制冷原理及性能研究[D]. 大连: 大连理工大学, 2013. |
Zhao J Q. Studying on gas wave refrigeration enhancement by the pressurize characteristics of shock wave in oscillation tube [D]. Dalian: Dalian University of Technology, 2013. | |
18 | Hu D P, Yu Y, Liu P Q, et al. Improving refrigeration performance by using pressure exchange characteristic of wave rotor[J]. Journal of Energy Resources Technology, 2019, 141(2): 022004. |
19 | Hu D P, Yu Y, Liu P Q. Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2018, 130: 309-318. |
20 | 于洋. 激波传递能量强化双开口振荡管制冷性能研究[D]. 大连: 大连理工大学, 2018. |
Yu Y. Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D]. Dalian: Dalian University of Technology, 2018. | |
21 | Harris S D, Ingham D B, Pop I. Transient boundary-layer heat transfer from a flat plate subjected to a sudden change in heat flux[J]. European Journal of Mechanics – B: Fluids, 2001, 20(2): 187-204. |
22 | Polidori G, Lachi M, Padet J. Unsteady convective heat transfer on a semi-infinite flat surface impulsively heated[J]. International Communications in Heat and Mass Transfer, 1998, 25(1): 33-42. |
23 | Yang L B, Han H Z, Li Y J, et al. A numerical study of the flow and heat transfer characteristics of outward convex corrugated tubes with twisted-tape insert[J]. Journal of Heat Transfer, 2016, 138(2): 024501. |
24 | Jo J C, Choi Y H, Choi S K. Numerical analysis of unsteady conjugate heat transfer and thermal stress for a curved piping system subjected to thermal stratification[J]. Journal of Pressure Vessel Technology, 2003, 125(4): 467-474. |
25 | Welch G E, Paxson D E, Wilson J, et al. Wave-rotor-enhanced gas turbine engine demonstrator[R]. NASA/TM-1999-209459,1999. |
26 | Paxson D E, Wilson J. Recent improvements to and validation of the one dimensional NASA wave rotor model[R]. NASA TM-106913,1995. |
27 | Elloye K J, Piechna J. Influence of the heat transfer on the operation of the pressure wave supercharger[J]. The Archive of Mechanical Engineering, 1999, (4): 297-309. |
28 | Li H W. Unsteady boundary layer and numerical modeling of transient heat transfer with application in wave rotors[D]. USA: Purdue University, 2009. |
29 | Deng S, Okamoto K, Teramoto S. Numerical investigation of heat transfer effects in small wave rotor[J]. Journal of Mechanical Science and Technology, 2015, 29(3): 939-950. |
30 | 王静娴, 郑友林, 胡恒, 等. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308. |
Wang J X, Zheng Y L, Hu H, et al. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator[J]. CIESC Journal, 2019, 70(4): 1302-1308. | |
31 | Ozawa H. Visualization of unsteady boundary-layer transition on shock-tube wall using highly sensitive fast-response TSP[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, Scotland. Reston, Virginia: AIAA, 2015. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[5] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[6] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[7] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[8] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[9] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[10] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[11] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[12] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[13] | Jia LUO, Shuangying WU, Lan XIAO, Shiyao ZHOU, Zhili CHEN. Experiment on the effect of impact velocities on the local heat transfer characteristics for successive droplets impacting on heated cylindrical surface [J]. CIESC Journal, 2022, 73(7): 2944-2951. |
[14] | Bin DONG, Yonghao XUE, Kunfeng LIANG, Zhengyin YUAN, Lin WANG, Xun ZHOU. Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension [J]. CIESC Journal, 2022, 73(7): 2971-2981. |
[15] | Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack [J]. CIESC Journal, 2022, 73(7): 3222-3231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||