CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2971-2981.DOI: 10.11949/0438-1157.20220192
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bin DONG1(),Yonghao XUE1,Kunfeng LIANG1(),Zhengyin YUAN2,Lin WANG1,Xun ZHOU1
Received:
2022-02-10
Revised:
2022-04-29
Online:
2022-08-01
Published:
2022-07-05
Contact:
Kunfeng LIANG
董彬1(),薛永浩1,梁坤峰1(),袁争印2,王林1,周训1
通讯作者:
梁坤峰
作者简介:
董彬(1980—),男,讲师,基金资助:
CLC Number:
Bin DONG, Yonghao XUE, Kunfeng LIANG, Zhengyin YUAN, Lin WANG, Xun ZHOU. Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension[J]. CIESC Journal, 2022, 73(7): 2971-2981.
董彬, 薛永浩, 梁坤峰, 袁争印, 王林, 周训. 相变微胶囊悬浮液喷淋换热特性实验研究[J]. 化工学报, 2022, 73(7): 2971-2981.
Add to citation manager EndNote|Ris|BibTeX
喷淋介质 | SMD/μm | 喷淋温度/℃ | 空气流量/(m3/s) |
---|---|---|---|
纯水、MPCMS | 80、240 | 35、40、44、47、51 | 0.011、0.018、0.025 |
Table 1 Experimental conditions
喷淋介质 | SMD/μm | 喷淋温度/℃ | 空气流量/(m3/s) |
---|---|---|---|
纯水、MPCMS | 80、240 | 35、40、44、47、51 | 0.011、0.018、0.025 |
1 | Rao Z H, Qian Z, Kuang Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514-1522. |
2 | Erdemir D, Atesoglu H, Altuntop N. Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system[J]. Renewable Energy, 2019, 138: 187-197. |
3 | Serale G, Fabrizio E, Perino M. Design of a low-temperature solar heating system based on a slurry phase change material (PCS)[J]. Energy and Buildings, 2015, 106: 44-58. |
4 | Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323. |
5 | Al-Abidi A A, Bin Mat S, Sopian K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5802-5819. |
6 | Trivedi G V N, Parameshwaran R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519. |
7 | Inaba H, Zhang Y L, Horibe A, et al. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above[J]. Heat and Mass Transfer, 2007, 43(5): 459-470. |
8 | Inaba H, Zhang Y L, Horibe A. Transient heat storage characteristics on horizontal rectangular enclosures filled with fluidity slurry of micro-encapsulated phase-change-material dispersed in water[J]. Journal of Thermal Science and Technology, 2006, 1(2): 66-77. |
9 | Yuan Z Y, Liang K F, Xue Y H, et al. Experimental study of evaluation of dynamical utilization of a microencapsulated phase change material slurry based on temperature range matching analysis[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105788. |
10 | Allouche Y, Varga S, Bouden C, et al. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank[J]. Energy Conversion and Management, 2015, 94: 275-285. |
11 | Zhang S, Niu J L. Two performance indices of TES apparatus: comparison of MPCM slurry vs. stratified water storage tank[J]. Energy and Buildings, 2016, 127: 512-520. |
12 | Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Applied Thermal Engineering, 2018, 144: 721-725. |
13 | Diaconu B M, Varga S, Oliveira A C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry[J]. Energy, 2010, 35(6): 2688-2693. |
14 | Bai Z R, Miao Y B, Xu H T, et al. Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry[J]. Thermal Science and Engineering Progress, 2020, 17: 100362. |
15 | 卜令帅, 屈治国, 徐洪涛, 等. 相变微胶囊悬浮液储能系统放冷特性实验研究[J]. 化工学报, 2021, 72(8): 4064-4072. |
Bu L S, Qu Z G, Xu H T, et al. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry[J]. CIESC Journal, 2021, 72(8): 4064-4072. | |
16 | Kong M, Alvarado J L, Terrell W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2016, 101: 901-914. |
17 | Sabbah R, Farid M M, Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study[J]. Applied Thermal Engineering, 2009, 29(2/3): 445-454. |
18 | 钟小龙, 刘东, 胥海伦. 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67(S1): 203-209. |
Zhong X L, Liu D, Xu H L. Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67(S1): 203-209. | |
19 | Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. |
20 | Qiu Z Z, Li L. Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux[J]. Sustainable Cities and Society, 2020, 52: 101786. |
21 | Ma F, Chen J, Zhang P. Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes[J]. Energy, 2018, 149: 944-953. |
22 | Zhang Y L, Wang S F, Rao Z H, et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2726-2733. |
23 | Wang X C, Niu J L, Li Y, et al. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2480-2491. |
24 | Yamagishi Y, Sugeno T, Ishige T, et al. An evaluation of microencapsulated PCM for use in cold energy transportation medium[C]//IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, DC, USA: IEEE, 1996: 2077-2083. |
25 | Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
26 | Inaba H, Kim M J, Horibe A. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters[J]. Journal of Heat Transfer, 2004, 126(4): 558-565. |
27 | Zhang Y P, Jiang Y, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201-205. |
28 | Mar n J M, Zalba B N, Cabeza L F, et al. Determination of enthalpy temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties[J]. Measurement Science and Technology, 2003, 14(2): 184-189. |
29 | Xu Z, Xiao Y H, Wang Y. Experimental and theoretical studies on air humidification by a water spray for humid air turbine cycle[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain, 2008: 385-393. |
30 | 胡先旭, 张寅平. 等壁温条件下潜热型功能热流体换热强化机理的理论研究[J]. 太阳能学报, 2002, 23(5): 626-633. |
Hu X X, Zhang Y P. Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall[J]. Acta Energiae Solaris Sinica, 2002, 23(5): 626-633. | |
31 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
Zhang F, Xu J Q, Huang X J. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the CSEE, 2017, 37(10): 2905-2912. | |
32 | Xia Z Z, Chen C J, Wang R Z. Numerical simulation of a closed wet cooling tower with novel design[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2367-2374. |
33 | Kloppers J C, Kröger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences, 2005, 44(9): 879-884. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[8] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||