CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3747-3756.DOI: 10.11949/0438-1157.20201845
• Biochemical engineering and technology • Previous Articles Next Articles
CHEN Tingting(),HAN Kaixin,CHEN Cuixue,LING Xueping,SHEN Liang,LU Yinghua()
Received:
2020-12-16
Revised:
2021-03-16
Online:
2021-07-05
Published:
2021-07-05
Contact:
LU Yinghua
通讯作者:
卢英华
作者简介:
陈婷婷(1990—),女,博士研究生,基金资助:
CLC Number:
CHEN Tingting, HAN Kaixin, CHEN Cuixue, LING Xueping, SHEN Liang, LU Yinghua. Study of iron-reducing bacteria Shewanellaxiamenensis BC01 under organic solvents stress[J]. CIESC Journal, 2021, 72(7): 3747-3756.
陈婷婷, 韩恺忻, 陈翠雪, 凌雪萍, 沈亮, 卢英华. 铁还原菌Shewanella xiamenensis BC01的有机溶剂应激研究[J]. 化工学报, 2021, 72(7): 3747-3756.
Add to citation manager EndNote|Ris|BibTeX
外加溶剂 | 分子量 | lgP | 密度/(g/ml) | 溶解度/(g/100 H2O) | SGR① for 1%/(g/h) | SGR① for 2%/(g/h) | SGR① for 5%/ (g/h) |
---|---|---|---|---|---|---|---|
水(对照组) | 18.0 | — | 1.0 | 无穷大 | 0.2992② | ||
甲醇 | 32.0 | -0.5 | 0.792 | 无穷大 | 0.2336 | 0.2329 | 0.1836 |
乙醇 | 46.1 | -0.08 | 0.790 | 无穷大 | 0.2655 | 0.2328 | 0.0486 |
异丙醇 | 60.1 | 0.38 | 0.804 | 无穷大 | 0.3144 | 0.3550 | ND |
丙醇 | 60.1 | 0.59 | 0.785 | 无穷大 | 0.3035 | 0.1666 | ND |
叔丁醇 | 74.1 | 0.80 | 0.781 | 8.8 | 0.2484 | 0.1425 | ND |
丁醇 | 74.1 | 1.16 | 0.809 | 8.0 | 0.0244 | 0.0004 | ND |
丙酮 | 78.13 | -2.03 | 1.101 | 易溶 | 0.2432 | 0.2031 | 0.0115 |
DMSO | 58.08 | -0.24 | 0.788 | 无穷大 | 0.2256 | 0.2047 | 0.1323 |
Table 1 Physical properties of different organic solvents and specific growth rate for SXM cultured in different solvents
外加溶剂 | 分子量 | lgP | 密度/(g/ml) | 溶解度/(g/100 H2O) | SGR① for 1%/(g/h) | SGR① for 2%/(g/h) | SGR① for 5%/ (g/h) |
---|---|---|---|---|---|---|---|
水(对照组) | 18.0 | — | 1.0 | 无穷大 | 0.2992② | ||
甲醇 | 32.0 | -0.5 | 0.792 | 无穷大 | 0.2336 | 0.2329 | 0.1836 |
乙醇 | 46.1 | -0.08 | 0.790 | 无穷大 | 0.2655 | 0.2328 | 0.0486 |
异丙醇 | 60.1 | 0.38 | 0.804 | 无穷大 | 0.3144 | 0.3550 | ND |
丙醇 | 60.1 | 0.59 | 0.785 | 无穷大 | 0.3035 | 0.1666 | ND |
叔丁醇 | 74.1 | 0.80 | 0.781 | 8.8 | 0.2484 | 0.1425 | ND |
丁醇 | 74.1 | 1.16 | 0.809 | 8.0 | 0.0244 | 0.0004 | ND |
丙酮 | 78.13 | -2.03 | 1.101 | 易溶 | 0.2432 | 0.2031 | 0.0115 |
DMSO | 58.08 | -0.24 | 0.788 | 无穷大 | 0.2256 | 0.2047 | 0.1323 |
外加溶剂 | 测量粒径与原始粒径比值/% | PDI |
---|---|---|
LB (H2O) | 100.0 | 0.078 |
2% 甲醇 | 109.9 | 0.025 |
2% 乙醇 | 94.3 | 0.040 |
2% 丙醇 | 179.6 | 0.469 |
1% 丁醇 | 69.3 | 0.159 |
2% 叔丁醇 | 129.0 | 0.229 |
2% 丙酮 | 105.7 | 0.128 |
2% DMSO | 97.5 | 0.084 |
Table 2 Particle size distribution of SXM under cultured in different organic solvents
外加溶剂 | 测量粒径与原始粒径比值/% | PDI |
---|---|---|
LB (H2O) | 100.0 | 0.078 |
2% 甲醇 | 109.9 | 0.025 |
2% 乙醇 | 94.3 | 0.040 |
2% 丙醇 | 179.6 | 0.469 |
1% 丁醇 | 69.3 | 0.159 |
2% 叔丁醇 | 129.0 | 0.229 |
2% 丙酮 | 105.7 | 0.128 |
2% DMSO | 97.5 | 0.084 |
Fig.3 SDS-PAGE profiles of SXM cultured at normal condition (Ori), 1% n-propanol (P1), 2% n-propanol(P2) and 1% n-butanol (B1) for whole cell and periplasm, respectively(The proteins indicated by the arrows were followed by MALDI-TOF-TOF)
样品 | 蛋白及对应菌株 | 蛋白分数① | 蛋白编号 | 分子量 | 等电点 |
---|---|---|---|---|---|
TonB | TonB-dependent receptor Shewanella sp. MR-4 | 657 | gi|499941499 | 82239 | 4.92 |
IucA | IucA/IucC family protein Shewanella xiamenensis | 1079 | gi|659914351 | 72233 | 5.89 |
P1 | phosphoglucomutase/phosph-omannomutase alpha/beta/subunit Shewanella xiamenensis | 543 | gi|659915240 | 63150 | 5.85 |
P2 | iron-containing alcohol dehydrogenase Shewanella xiamenensis | 749 | gi|659915731 | 40394 | 5.34 |
OmpA | OmpA family protein Shewanella xiamenensis | 328 | gi|659913939 | 40372 | 4.72 |
porin | porin Shewanella xiamenensis | 1177 | gi|659913622 | 39016 | 4.60 |
Hsp90 | heat shock protein 90 Shewanella oneidensis | 336 | gi|499384609 | 71779 | 5.25 |
Ahd | aromatic hydrocarbon degradation membrane protein Shewanella xiamenensis | 845 | gi|659914295 | 45906 | 4.43 |
Table 3 Mascot protein identi?cation of differential proteins produced by SXM under cultured in different alcohols
样品 | 蛋白及对应菌株 | 蛋白分数① | 蛋白编号 | 分子量 | 等电点 |
---|---|---|---|---|---|
TonB | TonB-dependent receptor Shewanella sp. MR-4 | 657 | gi|499941499 | 82239 | 4.92 |
IucA | IucA/IucC family protein Shewanella xiamenensis | 1079 | gi|659914351 | 72233 | 5.89 |
P1 | phosphoglucomutase/phosph-omannomutase alpha/beta/subunit Shewanella xiamenensis | 543 | gi|659915240 | 63150 | 5.85 |
P2 | iron-containing alcohol dehydrogenase Shewanella xiamenensis | 749 | gi|659915731 | 40394 | 5.34 |
OmpA | OmpA family protein Shewanella xiamenensis | 328 | gi|659913939 | 40372 | 4.72 |
porin | porin Shewanella xiamenensis | 1177 | gi|659913622 | 39016 | 4.60 |
Hsp90 | heat shock protein 90 Shewanella oneidensis | 336 | gi|499384609 | 71779 | 5.25 |
Ahd | aromatic hydrocarbon degradation membrane protein Shewanella xiamenensis | 845 | gi|659914295 | 45906 | 4.43 |
外加溶剂 | 全细胞酶活/(U/L) | |
---|---|---|
以铁酸盐为底物 | 以FeCl3为底物 | |
LB (H2O) | 286.1±12.0 | 9.5±0.6 |
丙醇 | 74.0±4.1 | 3.3±0.23 |
丁醇 | 72.2±3.2 | 3.0±0.05 |
Table 4 Fe reductase activities of SXM bearing different solvents
外加溶剂 | 全细胞酶活/(U/L) | |
---|---|---|
以铁酸盐为底物 | 以FeCl3为底物 | |
LB (H2O) | 286.1±12.0 | 9.5±0.6 |
丙醇 | 74.0±4.1 | 3.3±0.23 |
丁醇 | 72.2±3.2 | 3.0±0.05 |
Fig.4 The quantification real time PCR (qRT-PCR) standard curves of genes of MTR pathway (mtrA, mtrB and mrtC) and gene expression level under solvent stress
Fig.5 Proposed mechanism of electrons transfer through the outer membrane associated proteins (MtrA, MtrB and MtrC) under LB medium and 2% n-propanol in LB respectively
1 | Oram J, Jeuken L J C. Shewanella oneidensis MR-1 electron acceptor taxis and the perception of electrodes poised at oxidative potentials[J]. Current Opinion in Electrochemistry, 2017, 5(1): 99-105. |
2 | Hau H H, Gralnick J A. Ecology and biotechnology of the genus Shewanella[J]. Annual Review of Microbiology, 2007, 61: 237-258. |
3 | Hofle M G, Brettar I. Genotyping of heterotrophic bacteria from the central Baltic sea by use of low-molecular-weight RNA profiles[J]. Applied and Environmental Microbiology, 1996, 62(4): 1383-1390. |
4 | Fredrickson J K, Romine M F, Beliaev A S, et al. Towards environmental systems biology of Shewanella[J]. Nature Reviews Microbiology, 2008, 6(8): 592-603. |
5 | Shi L, Rosso K M, Clarke T A, et al. Molecular underpinnings of Fe(Ⅲ) oxide reduction by Shewanella oneidensis MR-1[J]. Frontiers in Microbiology, 2012, 3: 50. |
6 | Xu W H, Jin Z H, Pang X, et al. Interaction between biocompatible graphene oxide and live Shewanella in the self-assembled hydrogel: the role of physicochemical properties[J]. ACS Applied Bio Materials, 2020, 3(7): 4263-4272. |
7 | Ng I S, Chen T T, Lin R, et al. Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01[J]. Applied Microbiology and Biotechnology, 2014, 98(5): 2297-2308. |
8 | Xu F C, Mou Z Y, Geng J Y, et al. Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment[J]. Chemosphere, 2016, 158: 30-36. |
9 | Shen L, Jin Z H, Xu W H, et al. Enhanced treatment of anionic and cationic dyes in wastewater through live bacteria encapsulation using graphene hydrogel[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7817-7824. |
10 | Li Y X, Chen Z, Shi Y Y, et al. Function of c-type cytochromes of Shewanella xiamenensis in enhanced anaerobic bioreduction of Cr(Ⅵ) by graphene oxide and graphene oxide/polyvinyl alcohol films[J]. Journal of Hazardous Materials, 2020, 387: 122018. |
11 | Shen L, Jin Z H, Wang D, et al. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel[J]. Chemosphere, 2018, 190: 201-210. |
12 | Wang H F, Zhao H P, Zhu L Z. Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants[J]. Journal of Hazardous Materials, 2020, 384: 121495. |
13 | Zou L, Huang Y H, Long Z E, et al. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing[J]. World Journal of Microbiology and Biotechnology, 2018, 35(1): 1-9. |
14 | Watson V J, Logan B E. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures[J]. Biotechnology and Bioengineering, 2010, 105(3): 489-498. |
15 | Wu D, Xing D F, Lu L, et al. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs[J]. Bioresource Technology, 2013, 135: 630-634. |
16 | Heipieper H J, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems[J]. Applied Microbiology and Biotechnology, 2007, 74(5): 961-973. |
17 | 王鑫昕, 王少华, 李维,等. 细菌的有机溶剂耐受机制[J]. 生物工程学报, 2009, 25(5): 641-649. |
Wang X X, Wang S H, Li W, et al. Tolerant mechanisms of bacteria to organic solvents[J]. Chinese Journal of Biotechnology, 2009, 25(5): 641-649. | |
18 | Isken S, Derks A, Wolffs P F, et al. Effect of organic solvents on the yield of solvent-tolerant Pseudomonas putida S12[J]. Appl. Environ. Microbiol., 1999, 65(6): 2631-2635. |
19 | Li X Z, Poole K. Organic solvent-tolerant mutants of Pseudomonas aeruginosa display multiple antibiotic resistance[J]. Canadian Journal of Microbiology, 1999, 45(1): 18-22. |
20 | Matsumoto M, de Bont J A M, Isken S. Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1[J]. Journal of Bioscience and Bioengineering, 2002, 94(1): 45-51. |
21 | Zahir Z, Seed K D, Dennis J J. Isolation and characterization of novel organic solvent-tolerant bacteria[J]. Extremophiles, 2006, 10(2): 129-138. |
22 | Na K S, Kuroda A, Takiguchi N, et al. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains[J]. Journal of Bioscience and Bioengineering, 2005, 99(4): 378-382. |
23 | Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marine microorganisms[J]. Trends in Biotechnology, 1996, 14(1): 6-12. |
24 | Sardessai Y, Bhosle S. Tolerance of bacteria to organic solvents[J]. Research in Microbiology, 2002, 153(5): 263-268. |
25 | Stancu M M. Solvent tolerance mechanisms in Shewanella putrefaciens IBB_Po6[J]. Water, Air, & Soil Pollution, 2015, 226(3): 1-16. |
26 | Kieboom J, Dennis J J, Zylstra G J, et al. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents[J]. Journal of Bacteriology, 1998, 180(24): 6769-6772. |
27 | Nemecek-Marshall M, Wojciechowski C, Wagner W P, et al. Acetone formation in the Vibrio family: a new pathway for bacterial leucine catabolism[J]. Journal of Bacteriology, 1999, 181(24): 7493-7499. |
28 | Gralnick J A, Vali H, Lies D P, et al. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1[J]. PNAS, 2006, 103(12): 4669-4674. |
29 | Aono R, Tsukagoshi N, Yamamoto M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12[J]. Journal of Bacteriology, 1998, 180(4): 938-944. |
30 | Salas E C, Sun Z, Lüttge A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS Nano, 2010, 4(8): 4852-4856. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[4] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[5] | Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety [J]. CIESC Journal, 2023, 74(1): 342-354. |
[6] | Wei LIU, Yan SUN. Research progress on amyloid β-protein aggregation and its regulation [J]. CIESC Journal, 2022, 73(6): 2381-2396. |
[7] | Yong LU, Duiping LIU, Chenyang LI, Jibin ZHOU, Mao YE. Investigation on MTO catalyst morphology and its coke amount by fiber-optic endoscope image method [J]. CIESC Journal, 2022, 73(6): 2662-2668. |
[8] | Cuiping TANG, Yanan ZHANG, Deqing LIANG, Xiang LI. Inhibition effect of chain end modified polyvinyl caprolactam on methane hydrate formation [J]. CIESC Journal, 2022, 73(5): 2130-2139. |
[9] | Shiyi GE, Yao YANG, Zhengliang HUANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Analyzing particle growth and morphology evolution of polyethylene based on electrostatic separation [J]. CIESC Journal, 2022, 73(4): 1585-1596. |
[10] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[11] | Shan CHENG, Rui LUO, Hong TIAN, Zhenqi WANG, Jingchun HUANG, Yu QIAO. Effect of hydrothermal carbonization temperature on transformation path of organic nitrogen in sludge [J]. CIESC Journal, 2022, 73(11): 5220-5229. |
[12] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
[13] | HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots [J]. CIESC Journal, 2021, 72(S1): 530-538. |
[14] | Xiaoxi YU, Zhenzhen YAN, Qihui JIANG, Xia WU, Yuxiao ZHANG, Xiaojuan WANG, Fang HUANG. Study on the effect of 1-octyl-3-methylimidazole bromide aggregation state on protein crystallization [J]. CIESC Journal, 2021, 72(9): 4854-4860. |
[15] | Nanxing LI, Lin ZHANG. Design of asthma inhibitors targeting Galectin-10 protein [J]. CIESC Journal, 2021, 72(9): 4847-4853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||