CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1473-1479.DOI: 10.11949/0438-1157.20201877
• Process system engineering • Previous Articles Next Articles
LI Zhendong1(),YANG Minbo1(),FENG Xiao1,WANG Yufei2
Received:
2020-12-15
Revised:
2020-12-21
Online:
2021-03-05
Published:
2021-03-05
Contact:
YANG Minbo
通讯作者:
杨敏博
作者简介:
李振东(1996—),男,硕士研究生,基金资助:
CLC Number:
LI Zhendong, YANG Minbo, FENG Xiao, WANG Yufei. Simulation and retrofit of desulfurization system in refinery[J]. CIESC Journal, 2021, 72(3): 1473-1479.
李振东, 杨敏博, 冯霄, 王彧斐. 炼厂脱硫系统的模拟和改造[J]. 化工学报, 2021, 72(3): 1473-1479.
Add to citation manager EndNote|Ris|BibTeX
单元 | 塔顶压力/ kPa | 塔底压力/ kPa | 塔板数 | 进料流量/(kmol·h-1) | 脱硫目标/ kPa |
---|---|---|---|---|---|
U101 | 2850 | 2950 | 10 | 120.5 | 0.056 |
U102 | 1570 | 1650 | 10 | 2125 | 0.041 |
U103 | 6280 | 6330 | 18 | 3944 | 0.647 |
U104 | 12000 | 12050 | 10 | 5453 | 15.816 |
U105 | 11600 | 11650 | 16 | 7058 | 48.72 |
Table 1 Operating parameters of each desulfurization unit
单元 | 塔顶压力/ kPa | 塔底压力/ kPa | 塔板数 | 进料流量/(kmol·h-1) | 脱硫目标/ kPa |
---|---|---|---|---|---|
U101 | 2850 | 2950 | 10 | 120.5 | 0.056 |
U102 | 1570 | 1650 | 10 | 2125 | 0.041 |
U103 | 6280 | 6330 | 18 | 3944 | 0.647 |
U104 | 12000 | 12050 | 10 | 5453 | 15.816 |
U105 | 11600 | 11650 | 16 | 7058 | 48.72 |
单元 | 组成/%(mol) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | i-C4H10 | n-C4H10 | H2S | H2O | MDEA | H2 | C6H14 | C5H12 | |
U101 | 10.64 | 7.87 | 5.4 | 2.26 | 0.55 | 0.2 | 0 | 0 | 72.28 | 0.8 | 0 |
U102 | 6.21 | 3.12 | 0 | 0 | 0 | 0.2 | 0 | 0 | 90.47 | 0 | 0 |
U103 | 10.16 | 4.28 | 1.74 | 0.3 | 0.37 | 1.98 | 0.16 | 0 | 80.51 | 0.2 | 0.3 |
U104 | 6.15 | 2.89 | 1.81 | 0.76 | 0.19 | 0.34 | 0 | 0 | 87.3 | 0.54 | 0.02 |
U105 | 1.99 | 0.07 | 0.04 | 0.02 | 0.01 | 2.64 | 0 | 0 | 95.22 | 0.01 | 0 |
贫胺液 | 0 | 0 | 0 | 0 | 0 | 0.07 | 93.85 | 6.08 | 0 | 0 | 0 |
Table 2 Compositions of feed gas and lean amine solution
单元 | 组成/%(mol) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | i-C4H10 | n-C4H10 | H2S | H2O | MDEA | H2 | C6H14 | C5H12 | |
U101 | 10.64 | 7.87 | 5.4 | 2.26 | 0.55 | 0.2 | 0 | 0 | 72.28 | 0.8 | 0 |
U102 | 6.21 | 3.12 | 0 | 0 | 0 | 0.2 | 0 | 0 | 90.47 | 0 | 0 |
U103 | 10.16 | 4.28 | 1.74 | 0.3 | 0.37 | 1.98 | 0.16 | 0 | 80.51 | 0.2 | 0.3 |
U104 | 6.15 | 2.89 | 1.81 | 0.76 | 0.19 | 0.34 | 0 | 0 | 87.3 | 0.54 | 0.02 |
U105 | 1.99 | 0.07 | 0.04 | 0.02 | 0.01 | 2.64 | 0 | 0 | 95.22 | 0.01 | 0 |
贫胺液 | 0 | 0 | 0 | 0 | 0 | 0.07 | 93.85 | 6.08 | 0 | 0 | 0 |
脱硫单元 | 最小贫胺液/ (kmol·h-1) | 脱后气体硫化氢分压/kPa | 脱硫目标/kPa | 相对误差/% |
---|---|---|---|---|
U101 | 14 | 0.054 | 0.056 | 3.6 |
U102 | 355 | 0.039 | 0.041 | 4.9 |
U103 | 1623 | 0.634 | 0.647 | 2.0 |
U104 | 305 | 15.264 | 15.816 | 3.5 |
U105 | 2600 | 48.488 | 48.720 | 0.5 |
总计 | 4897 | — | — | — |
Table 3 Minimum amount of lean amine solution in each desulfurization unit
脱硫单元 | 最小贫胺液/ (kmol·h-1) | 脱后气体硫化氢分压/kPa | 脱硫目标/kPa | 相对误差/% |
---|---|---|---|---|
U101 | 14 | 0.054 | 0.056 | 3.6 |
U102 | 355 | 0.039 | 0.041 | 4.9 |
U103 | 1623 | 0.634 | 0.647 | 2.0 |
U104 | 305 | 15.264 | 15.816 | 3.5 |
U105 | 2600 | 48.488 | 48.720 | 0.5 |
总计 | 4897 | — | — | — |
脱硫单元 | 串联操作 | 串并联操作 | 现行系统 | |||
---|---|---|---|---|---|---|
贫胺液/ (kmol·h-1) | 脱后气体硫化氢分压/kPa | 贫胺液/ (kmol·h-1) | 脱后气体硫化氢分压/kPa | 贫胺液/ (kmol·h-1) | 脱硫目标/kPa | |
U101 | 4465 | 0.014 | 14 | 0.054 | 14 | 0.056 |
U102 | 0 | 0.016 | 355 | 0.039 | 355 | 0.041 |
U103 | 0 | 0.082 | 1623 | 0.634 | 1623 | 0.647 |
U104 | 0 | 7.800 | 305 | 15.264 | 305 | 15.816 |
U105 | 0 | 48.488 | 2110 | 48.488 | 2600 | 48.720 |
总计 | 4465 | — | 4407 | — | 4897 | — |
Table 4 The results of two operation modes
脱硫单元 | 串联操作 | 串并联操作 | 现行系统 | |||
---|---|---|---|---|---|---|
贫胺液/ (kmol·h-1) | 脱后气体硫化氢分压/kPa | 贫胺液/ (kmol·h-1) | 脱后气体硫化氢分压/kPa | 贫胺液/ (kmol·h-1) | 脱硫目标/kPa | |
U101 | 4465 | 0.014 | 14 | 0.054 | 14 | 0.056 |
U102 | 0 | 0.016 | 355 | 0.039 | 355 | 0.041 |
U103 | 0 | 0.082 | 1623 | 0.634 | 1623 | 0.647 |
U104 | 0 | 7.800 | 305 | 15.264 | 305 | 15.816 |
U105 | 0 | 48.488 | 2110 | 48.488 | 2600 | 48.720 |
总计 | 4465 | — | 4407 | — | 4897 | — |
1 | Chen Q, Wang Z, Long D, et al. Role of pore structure of activated carbon fibers in the catalytic oxidation of H2S[J]. Industrial & Engineering Chemistry Research, 2010, 49: 3152-3159. |
2 | Guo Z, Zhang T, Liu T, et al. Nonaqueous system of iron-based ionic liquid and DMF for the oxidation of hydrogen sulfide and regeneration by electrolysis[J]. Environmental Science & Technology, 2015, 49: 5697-5703. |
3 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
4 | Haghtalab A, Shojaeian A. Modeling solubility of acid gases in alkanolamines using the nonelectrolyte Wilson-nonrandom factor model[J]. Fluid Phase Equilibria, 2010, 289(1): 6-14. |
5 | Shojaeian A, Haghtalab A. Solubility and density of carbon dioxide in different aqueous alkanolamine solutions blended with 1-butyl-3-methylimidazolium acetate ionic liquid at high pressure[J]. Journal of Molecular Liquids, 2013, 187: 218-225. |
6 | Irani V, Tavasoli A, Vahidi M. Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption[J]. Journal of Colloid and Interface Science, 2018, 527: 57-67. |
7 | Haghtalab A, Izadi A. Solubility and thermodynamic modeling of hydrogen sulfide in aqueous (diisopropanolamine + 2-amino-2-methyl-1-propanol + piperazine) solution at high pressure[J]. The Journal of Chemical Thermodynamics, 2015, 90: 106-115. |
8 | Cleeton C, Kvam O, Rea R, et al. Competitive H2S–CO2 absorption in reactive aqueous methyldiethanolamine solution: Prediction with the ePC-SAFT equation of state[J]. Fluid Phase Equilibria, 2020, 511: 112453. |
9 | Taheri M, Mohebbi A, Hashemipour H, et al. Simultaneous absorption of carbon dioxide (CO2) and hydrogen sulfide (H2S) from CO2–H2S–CH4 gas mixture using amine-based nanofluids in a wetted wall column[J]. Journal of Natural Gas Science and Engineering, 2015, 28: 410-417. |
10 | Sadegh N, Stenby E H, Thomsen K. Thermodynamic modeling of hydrogen sulfide absorption by aqueous N-methyldiethanolamine using the extended UNIQUAC model[J]. Fluid Phase Equilibria, 2015, 392: 24-32. |
11 | Moioli S, Giuffrida A, Romano M, et al. Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants[J]. Applied Energy, 2016, 183: 1452-1470. |
12 | Mandald B, Bandyopadhyay S. Simultaneous adsorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine[J]. Environmental science & technology. 2006, 40: 6076-6084. |
13 | 张鹏军, 丁保宏, 夏裴文, 等. 原油化学脱硫剂的研究进展[J]. 当代化工, 2018, 47(2): 338-340. |
Zhang P J, Ding B H, Xia P W, et al. Research progress of chemical desulfurizer for crude oil[J]. Contemporary Chemical Industry, 2018, 47(2): 338-340. | |
14 | Zhang F, Gao Y, Wu X K, et al. Regeneration performance of amino acid ionic liquid (AAIL) activated MDEA solutions for CO2 capture[J]. Chemical Engineering Journal, 2013, 223: 371-378. |
15 | Demirbas A, Alidrisi H, Balubaid M A. API gravity, sulfur content, and desulfurization of crude oil[J]. Petroleum Science and Technology, 2015, 33(1): 93-101. |
16 | Qiu K, Shang J F, Ozturk M, et al. Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 379-385. |
17 | 宗月, 仇阳, 王为民, 等. 天然气脱硫脱碳工艺综述[J]. 化工管理, 2019, (4): 200-202. |
Zong Y, Qiu Y, Wang W M, et al. Review of natural gas desulfurization and decarbonization process[J]. Chemical Enterprise Management, 2019, (4): 200-202. | |
18 | 王茹洁, 刘闪闪, 陈博, 等. MEA活化MDEA工艺天然气选择性脱硫脱碳研究[J]. 天然气化工(C1化学与化工), 2019, 44(5): 45-49. |
Wang R J, Liu S S, Chen B, et al. Selective removal of H2S over CO2 from natural gas by MEA-activated MDEA[J]. Natural Gas Chemical Industry, 2019, 44(5): 45-49. | |
19 | 陆建刚, 王连军, 郑有飞, 等. MDEA-TBEE复合溶液选择性吸收H2S性能评价[J]. 化学工程, 2007, 35(8): 14-16. |
Lu J G, Wang L J, Zheng Y F, et al. Performance evaluation of selective absorption of H2S with aqueous solutions of MDEA blended with TBEE[J]. Chemical Engineering(China), 2007, 35(8): 14-16. | |
20 | Li C, Chu Y, Fu D. Solubility of low partial pressure H2S in MDEA-PZ aqueous solution[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199: 032097. |
21 | 林海周, 罗海中, 裴爱国, 等. 燃煤电厂烟气MDEA/PZ混合胺法碳捕集工艺模拟分析[J]. 化工进展, 2019, 38(4): 2046-2055. |
Lin H Z, Luo H Z, Pei A G, et al. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2046-2055. | |
22 | 安家荣, 马鹏飞, 唐建峰, 等. MDEA复配胺液脱除天然气中H2S性能[J]. 化工进展, 2016, 35(12): 3866-3871. |
An J R, Ma P F, Tang J F, et al. Performance of MDEA mixed amine solution removal H2S from natural gas[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3866-3871. | |
23 | 王中红, 陆诗建. DETA-MDEA复合溶液吸收与解吸CO2实验研究[J]. 当代化工, 2019, 48(5): 1004-1008. |
Wang Z H, Lu S J. Experimental analysis on absorption and desorption of CO2 by DETA-MDEA complex solution[J]. Contemporary Chemical Industry, 2019, 48(5): 1004-1008. | |
24 | Jassim M. Sensitivity analyses and optimization of a gas sweetening plant for hydrogen sulfide and carbon dioxide capture using methyldiethanolamine solutions[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 175-183. |
25 | Behroozsarand A, Zamaniyan A. Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process[J]. Journal of Natural Gas Chemistry, 2011, 20(1): 99-109. |
26 | Zhou W, Li Z, Liu H, et al. Data-based optimal tracking control for natural gas desulfurization system[J]. IEEE Access, 2019, 7: 155825-155834. |
27 | 金玉宝, 宋长河, 於皓月. 不同浓度及循环量下MDEA法脱硫效果优选对比[J]. 当代化工, 2017, 46(3): 457-460. |
Jin Y B, Song C H, Yu H Y. Comparison of desulfurization efficiency of MDEA process under different concentration and circulation flow rate[J]. Contemporary Chemical Industry, 2017, 46(3): 457-460. | |
28 | 卫浪, 蒲红宇, 向辉, 等. 基于二次回归正交组合设计的MDEA脱硫工艺参数优选[J]. 天然气化工(C1化学与化工), 2020, 45(3): 75-79. |
Wei L, Pu H Y, Xiang H, et al. Optimization of MDEA desulfurization process parameters based on quadratic regression orthogonal combination design[J]. Natural Gas Chemical Industry, 2020, 45(3): 75-79. | |
29 | 杨路, 王德胜. MDEA脱硫系统关键参数的把控[J]. 中氮肥, 2018, (4): 73-75. |
Yang L, Wang D S. Control of key parameters of MDEA desulfurization system[J]. M-Sized Nitrogenous Fertilizer Progress, 2018, (4): 73-75. | |
30 | 杨仁杰, 陈小榆, 蒋洪, 等. MDEA脱硫脱碳选择性研究[J]. 天然气化工(C1化学与化工), 2018, 43(4): 62-68. |
Yang R J, Chen X Y, Jiang H, et al. Selectivity of desulfurization and decarbonization by MDEA[J]. Natural Gas Chemical Industry, 2018, 43(4): 62-68. | |
31 | 马志研. 炼厂气MDEA脱硫系统模拟与优化[J]. 当代化工, 2016, 45(7): 1571-1575. |
Ma Z Y. Simulation and optimization of refinery gas MDEA desulfurization system[J]. Contemporary Chemical Industry, 2016, 45(7): 1571-1575 |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[10] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[11] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[12] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[13] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[14] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[15] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||