CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5226-5236.DOI: 10.11949/0438-1157.20210337
• Separation engineering • Previous Articles Next Articles
Yanfang WANG(),Heng MAO,Weiwei CAI,Aoshuai ZHANG,Lihao XU,Zhiping ZHAO()
Received:
2021-03-08
Revised:
2021-05-22
Online:
2021-10-05
Published:
2021-10-05
Contact:
Zhiping ZHAO
通讯作者:
赵之平
作者简介:
王艳芳(1995—),女,硕士,基金资助:
CLC Number:
Yanfang WANG,Heng MAO,Weiwei CAI,Aoshuai ZHANG,Lihao XU,Zhiping ZHAO. Enhancing ethanol production efficiency by ZIF-L/PDMS mixed matrix membrane via vapor permeation-fermentation coupling process[J]. CIESC Journal, 2021, 72(10): 5226-5236.
王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 SEM images of the surface (a) and cross-section (b) morphologies of pure PDMS membrane and the surface [(c),(d)] and cross-section [(e),(f)] morphologies of ZIF-L/PDMS mixed matrix membrane
发酵特性参数 | 单独发酵 | VP-ferment-PDMS | VP-ferment-ZIF-L/PDMS |
---|---|---|---|
细胞浓度/(g·L-1) | 18.99 | 26.28 | 29.81 |
乙醇总产量/g | 23.23 | 25.01 | 24.54 |
乙醇产率/(g·g-1) | 0.418 | 0.436 | 0.421 |
乙醇时空产率/(g·L-1·h-1) | 1.79 | 2.61 | 3.07 |
Table 1 Comparation of fermentation performance in different processes
发酵特性参数 | 单独发酵 | VP-ferment-PDMS | VP-ferment-ZIF-L/PDMS |
---|---|---|---|
细胞浓度/(g·L-1) | 18.99 | 26.28 | 29.81 |
乙醇总产量/g | 23.23 | 25.01 | 24.54 |
乙醇产率/(g·g-1) | 0.418 | 0.436 | 0.421 |
乙醇时空产率/(g·L-1·h-1) | 1.79 | 2.61 | 3.07 |
膜类型 | 膜分离 方法 | 发酵温度/ ℃ | 乙醇产率/ (g·g-1) | 乙醇时空产率/ (g·L-1·h-1) | 总通量/ (g·m-2·h-1) | 分离因子 | 乙醇移除速率①/(g·h-1) | 文献 |
---|---|---|---|---|---|---|---|---|
PDMS | PV | 35 | — | — | 750 | 4.83 | — | [ |
PDMS | VP | 35 | 0.414 | 3.33 | 350 | 10 | 0.27 | [ |
PDMS | PV | 35 | 0.381 | 2.67 | 385 | 8.8 | 0.38 | [ |
PDMS | PV | 35 | 0.45 | 3.05 | 355 | 6.3 | 0.47 | [ |
CNT-PDMS | PV | 30 | 0.45 | 2.23 | 41.4 | 6.2 | — | [ |
PDMS | PV | 35 | 0.38 | 2.31 | 370 | 9.5 | — | [ |
PDMS | PV | 35 | 0.42 | 1.58 | 417.2 | 11.7 | — | [ |
PDMS/CNT-GO | PV | 32 | — | — | 200 | 20 | — | [ |
Silicalite-1/PDMS | PV | 30 | 0.42 | 1.6 | 416 | 9.8 | — | [ |
PDMS | VP | 35 | 0.436 | 2.61 | 536 | 12.3 | 0.413 | 本工作 |
ZIF-L/PDMS | VP | 35 | 0.421 | 3.07 | 675 | 19.5 | 0.616 | 本工作 |
Table 2 Comparation of fermentation and membrane performance under different membrane types
膜类型 | 膜分离 方法 | 发酵温度/ ℃ | 乙醇产率/ (g·g-1) | 乙醇时空产率/ (g·L-1·h-1) | 总通量/ (g·m-2·h-1) | 分离因子 | 乙醇移除速率①/(g·h-1) | 文献 |
---|---|---|---|---|---|---|---|---|
PDMS | PV | 35 | — | — | 750 | 4.83 | — | [ |
PDMS | VP | 35 | 0.414 | 3.33 | 350 | 10 | 0.27 | [ |
PDMS | PV | 35 | 0.381 | 2.67 | 385 | 8.8 | 0.38 | [ |
PDMS | PV | 35 | 0.45 | 3.05 | 355 | 6.3 | 0.47 | [ |
CNT-PDMS | PV | 30 | 0.45 | 2.23 | 41.4 | 6.2 | — | [ |
PDMS | PV | 35 | 0.38 | 2.31 | 370 | 9.5 | — | [ |
PDMS | PV | 35 | 0.42 | 1.58 | 417.2 | 11.7 | — | [ |
PDMS/CNT-GO | PV | 32 | — | — | 200 | 20 | — | [ |
Silicalite-1/PDMS | PV | 30 | 0.42 | 1.6 | 416 | 9.8 | — | [ |
PDMS | VP | 35 | 0.436 | 2.61 | 536 | 12.3 | 0.413 | 本工作 |
ZIF-L/PDMS | VP | 35 | 0.421 | 3.07 | 675 | 19.5 | 0.616 | 本工作 |
Fig.9 Variations of ethanol concentration in permeate (a) and separation factor (b) during the VP- fermentation process with PDMS membrane and ZIF-L/PDMS membrane
1 | Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
2 | Brennan L, Owende P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 557-577. |
3 | Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry, 2010, 12(9): 1493. |
4 | Nigam P S, Singh A. Production of liquid biofuels from renewable resources[J]. Progress in Energy and Combustion Science, 2011, 37(1): 52-68. |
5 | Jönsson L J, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource Technology, 2016, 199: 103-112. |
6 | 潘多涛, 史洪岩, 袁德成, 等. 酿酒酵母代谢过程的振荡分析[J]. 化工学报, 2017, 68(3): 964-969. |
Pan D T, Shi H Y, Yuan D C, et al. Analysis of metabolic oscillation processes in Saccharomyces cerevisiae[J]. CIESC Journal, 2017, 68(3): 964-969. | |
7 | Hajilary N, Rezakazemi M, Shirazian S. Biofuel types and membrane separation[J]. Environmental Chemistry Letters, 2019, 17(1): 1-18. |
8 | He Y, Bagley D M, Leung K T, et al. Recent advances in membrane technologies for biorefining and bioenergy production[J]. Biotechnology Advances, 2012, 30(4): 817-858. |
9 | Wei P, Cheng L H, Zhang L, et al. A review of membrane technology for bioethanol production[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 388-400. |
10 | Sasaki K, Tsuge Y, Sasaki D, et al. Increased ethanol production from sweet sorghum juice concentrated by a membrane separation process[J]. Bioresource Technology, 2014, 169: 821-825. |
11 | Trinh L T P, Cho E J, Lee Y J, et al. Pervaporative separation of bioethanol produced from the fermentation of waste newspaper[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1910-1915. |
12 | Baeyens J, Kang Q, Appels L, et al. Challenges and opportunities in improving the production of bio-ethanol[J]. Progress in Energy and Combustion Science, 2015, 47: 60-88. |
13 | Zabed H, Sahu J N, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 475-501. |
14 | Fan S Q, Liu J Y, Tang X Y, et al. Process operation performance of PDMS membrane pervaporation coupled with fermentation for efficient bioethanol production[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1339-1347. |
15 | Zhang Q, Wu D Y, Lin Y, et al. Substrate and product inhibition on yeast performance in ethanol fermentation[J]. Energy & Fuels, 2015, 29(2): 1019-1027. |
16 | Fan S Q, Xiao Z Y, Tang X Y, et al. Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae[J]. Bioresource Technology, 2014, 162: 8-13. |
17 | Gaykawad S S, Rütze D N, van der Wielen L A M, et al. Vapour permeation for ethanol recovery from fermentation off-gas[J]. Biochemical Engineering Journal, 2017, 124: 54-63. |
18 | Maus E, Brüschke H E A. Separation of methanol from methylesters by vapour permeation: experiences of industrial applications[J]. Desalination, 2002, 148(1/2/3): 315-319. |
19 | Sander U, Janssen H. Industrial application of vapour permeation[J]. Journal of Membrane Science, 1991, 61: 113-129. |
20 | Gong G H, Mamoru M, Nagasawa H, et al. Vapor-permeation dehydration of isopropanol using a flexible and thin organosilica membrane with high permeance[J]. Journal of Membrane Science, 2019, 588: 117226. |
21 | Fujita Y, Yoshikawa M. Vapor permeation of aqueous ethanol mixtures through agarose membranes[J]. Journal of Membrane Science, 2014, 459: 114-121. |
22 | Zhu C, Chen L J, Xue C, et al. A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery[J]. Biotechnology for Biofuels, 2018, 11(1): 1-13. |
23 | Mao H, Zhen H G, Ahmad A, et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation[J]. Journal of Membrane Science, 2019, 582: 307-321. |
24 | Xu L H, Li S H, Mao H, et al. An advanced necklace-like metal organic framework with an ultrahighly continuous structure in the membrane for superior butanol/water separation[J]. Journal of Materials Chemistry A, 2021, 9(19): 11853-11862. |
25 | Zhao Z P, Zhang A S, Wang X L, et al. Controllable modification of polymer membranes by LDDLT plasma flow: grafting acidic ILs into PPF membrane for catalytic performance[J]. Journal of Membrane Science, 2018, 553: 99-110. |
26 | Zhao Z P, Wang X L, Zhou G Y, et al. Hydrolysis kinetics of inulin by imidazole-based acidic ionic liquid in aqueous media and bioethanol fermentation[J]. Chemical Engineering Science, 2016, 151: 16-24. |
27 | Fan S Q, Xiao Z Y, Zhang Y, et al. Enhanced ethanol fermentation in a pervaporation membrane bioreactor with the convenient permeate vapor recovery[J]. Bioresource Technology, 2014, 155: 229-234. |
28 | 韩小龙, 张杏梅, 马晓迅, 等. 碳纳米管填充PDMS膜的渗透汽化性能[J]. 化工学报, 2014, 65(1): 271-278. |
Han X L, Zhang X M, Ma X X, et al. Pervaporation performance of carbon nanotube filled PDMS membranes[J]. CIESC Journal, 2014, 65(1): 271-278. | |
29 | Wu X M, Zhang Q G, Soyekwo F, et al. Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane[J]. AIChE Journal, 2016, 62(3): 842-851. |
30 | Sun W, Jia W, Xia C J, et al. Study of in situ ethanol recovery via vapor permeation from fermentation[J]. Journal of Membrane Science, 2017, 530: 192-200. |
31 | Zhong Z X, Yao J F, Chen R Z, et al. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties[J]. Journal of Materials Chemistry A, 2015, 3(30): 15715-15722. |
32 | Li Y B, Wee L H, Martens J A, et al. ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery[J]. Journal of Materials Chemistry A, 2014, 2(26): 10034-10040. |
33 | Verploegh R J, Nair S, Sholl D S. Temperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulations[J]. Journal of the American Chemical Society, 2015, 137(50): 15760-15771. |
34 | Uchytil P, Petričkovič R. Vapor permeation and pervaporation of propan-1-ol and propan-2-ol in polyethylene membrane[J]. Journal of Membrane Science, 2002, 209(1): 67-79. |
35 | 曹中琦, 陈宁, 王庚, 等. 模拟发酵液中渗透汽化膜分离乙醇性能劣化研究[J]. 膜科学与技术, 2018, 38(6): 22-26, 40. |
Cao Z Q, Chen N, Wang G, et al. Membrane degradation in pervaporation of a simulated fermentation broth[J]. Membrane Science and Technology, 2018, 38(6): 22-26, 40. | |
36 | Okamoto K, Tanihara N, Watanabe H, et al. Vapor permeation and pervaporation separation of water-ethanol mixtures through polyimide membranes[J]. Journal of Membrane Science, 1992, 68(1/2): 53-63. |
37 | Khalid A, Aslam M, Qyyum M A, et al. Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 427-443. |
38 | Cao Z Q, Xia C J, Jia W, et al. Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process[J]. Journal of Membrane Science, 2020, 595: 117485. |
39 | Chen C Y, Long S H, Li A R, et al. Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor[J]. Preparative Biochemistry & Biotechnology, 2017, 47(3): 254-260. |
40 | Xue C, Wang Z X, Du G Q, et al. Integration of ethanol removal using carbon nanotube (CNT)-mixed membrane and ethanol fermentation by self-flocculating yeast for antifouling ethanol recovery[J]. Process Biochemistry, 2016, 51(9): 1140-1146. |
41 | Fu C H, Cai D, Hu S, et al. Ethanol fermentation integrated with PDMS composite membrane: an effective process[J]. Bioresource Technology, 2016, 200: 648-657. |
42 | Shafiei Amrei S, Asghari M, Esfahanian M, et al. Highly selective carbon nanotube-coupled graphene oxide-incorporated polydimethylsiloxane membrane for pervaporative membrane bioreactor ethanol production[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(5): 1604-1613. |
43 | Cai D, Hu S, Chen C J, et al. Immobilized ethanol fermentation coupled to pervaporation with silicalite-1/polydimethylsiloxane/polyvinylidene fluoride composite membrane[J]. Bioresource Technology, 2016, 220: 124-131. |
[1] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[2] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[3] | Renhua PEI, Yonghong WANG, Xinru ZHANG, Jinping LI. Synergistic of carbon nanotube/cyclodextrin metal organic framework for enhancing CO2 separation of mixed matrix membranes [J]. CIESC Journal, 2022, 73(9): 3904-3914. |
[4] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[5] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
[6] | Liwei WANG, Juanjuan WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Gas transport properties of PVAm-based mixed matrix membranes by incorporating with Cu3(BTC)2-MMT-NH2 [J]. CIESC Journal, 2022, 73(7): 3068-3077. |
[7] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
[8] | Guixian LI, Ke WANG, Jian WANG, Wenliang MENG, Jingwei LI, Yong YANG, Zongliang FAN, Dongliang WANG, Huairong ZHOU. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant [J]. CIESC Journal, 2022, 73(11): 5065-5077. |
[9] | Zhuo JIN, Yonghong WANG, Xinru ZHANG, Xue BAI, Jinping LI. Preparation of Pebax/a-MoS2/MIP-202 mixed matrix membranes for CO2 separation [J]. CIESC Journal, 2022, 73(10): 4527-4538. |
[10] | WU Zhongjie, LIU Zeyan, XIE Lianke, CUI Mei, HUANG Renliang. Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption [J]. CIESC Journal, 2021, 72(S1): 421-429. |
[11] | WANG Shaoyu, MA Hanze, WU Hong, LIANG Xu, WANG Hongjian, ZHU Ziting, JIANG Zhongyi. Research advances of organic framework membranes in gas separation [J]. CIESC Journal, 2021, 72(7): 3488-3510. |
[12] | DU Juan, GONG Zhiqiang, HUANG Caoxing, LIANG Chen, YAO Shuangquan, LIU Yang. Resin adsorption - ultrafiltration synergistic separation of alkaline extracted hemicellulose from bagasse [J]. CIESC Journal, 2021, 72(4): 2139-2147. |
[13] | Yi ZHOU,Yonghong WANG,Xinru ZHANG,Jinping LI. Preparation of PEBA/N, S co-doped porous carbon sphere mixed matrix membrane for CO2 separation [J]. CIESC Journal, 2021, 72(10): 5237-5246. |
[14] | Wei WANG, Xueying JIANG, Yue LI, Liping SU, Yun ZOU, Zhangfa TONG. Application of PVA membrane filled with hydrophilic ZSM-5 molecular sieve on separation of water from ethyl acetate [J]. CIESC Journal, 2020, 71(8): 3807-3818. |
[15] | Yanqing LIU, Tingting HU, Luoyi LU, Wei WANG, Yun ZOU, Zhangfa TONG. Preparation of PDMS/ZSM-5 membranes and pervaporation separation of n-butyl acetate and ethyl acetate from aqueous media [J]. CIESC Journal, 2020, 71(2): 843-853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||