CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5218-5225.DOI: 10.11949/0438-1157.20210311
• Separation engineering • Previous Articles Next Articles
Chunhui FAN(),Zongye GAO,Shanjing YAO,Dongqiang LIN()
Received:
2021-03-03
Revised:
2021-06-07
Online:
2021-10-05
Published:
2021-10-05
Contact:
Dongqiang LIN
通讯作者:
林东强
作者简介:
范春晖(1997—),女,硕士研究生,基金资助:
CLC Number:
Chunhui FAN,Zongye GAO,Shanjing YAO,Dongqiang LIN. Quantitative characterization of non-specific adsorption on affinity chromatography resins[J]. CIESC Journal, 2021, 72(10): 5218-5225.
范春晖,高宗晔,姚善泾,林东强. 亲和层析介质非特异性吸附的定量表征研究[J]. 化工学报, 2021, 72(10): 5218-5225.
Add to citation manager EndNote|Ris|BibTeX
名称 | 基质 | 配基 | 公司 |
---|---|---|---|
rProtein A Sepharose 4 Fast Flow (rProA) | 交联琼脂糖微球 | 重组Protein A | GE Healthcare |
MabSelect PrismA (PrismA) | 高度交联的琼脂糖微球 | 耐碱性重组Protein A | GE Healthcare |
Eshmuno A (EA) | 聚乙烯醚微球 | 重组Protein A | Merck |
Toyopearl AF-rProteinA HC-650F (HC-650F) | 聚甲基丙烯酸酯微球 | 重组Protein A | Tosoh |
Sepharose 4 Fast Flow (4FF) | 交联琼脂糖微球 | — | GE Healthcare |
Toyopearl HW-65F (HW-65F) | 聚甲基丙烯酸酯微球 | — | Tosoh |
Table 1 Protein A affinity chromatography resins and matrices
名称 | 基质 | 配基 | 公司 |
---|---|---|---|
rProtein A Sepharose 4 Fast Flow (rProA) | 交联琼脂糖微球 | 重组Protein A | GE Healthcare |
MabSelect PrismA (PrismA) | 高度交联的琼脂糖微球 | 耐碱性重组Protein A | GE Healthcare |
Eshmuno A (EA) | 聚乙烯醚微球 | 重组Protein A | Merck |
Toyopearl AF-rProteinA HC-650F (HC-650F) | 聚甲基丙烯酸酯微球 | 重组Protein A | Tosoh |
Sepharose 4 Fast Flow (4FF) | 交联琼脂糖微球 | — | GE Healthcare |
Toyopearl HW-65F (HW-65F) | 聚甲基丙烯酸酯微球 | — | Tosoh |
1 | Ecker D M, Jones S D, Levine H L. The therapeutic monoclonal antibody market[J]. mAbs, 2015, 7(1): 9-14. |
2 | Grilo A L, Mantalaris A. The increasingly human and profitable monoclonal antibody market[J]. Trends in Biotechnology, 2019, 37(1): 9-16. |
3 | Chon J H, Zarbis-Papastoitsis G. Advances in the production and downstream processing of antibodies[J]. New Biotechnology, 2011, 28(5): 458-463. |
4 | 卢慧丽, 林东强, 姚善泾. 抗体药物分离纯化中的层析技术及进展[J]. 化工学报, 2018, 69(1): 341-351. |
Lu H L, Lin D Q, Yao S J. Chromatographic technology in antibody purification and its progress[J]. CIESC Journal, 2018, 69(1): 341-351. | |
5 | Costioli M D, Guillemot-Potelle C, Mitchell-Logean C, et al. Cost of goods modeling and quality by design for developing cost-effective processes[J]. Biopharm International, 2010, 23(6): 26-35. |
6 | Klutz S, Holtmann L, Lobedann M, et al. Cost evaluation of antibody production processes in different operation modes[J]. Chemical Engineering Science, 2016, 141: 63-74. |
7 | 史策, 虞骥, 高栋, 等. 单抗制备的过程模拟和经济性分析[J]. 化工学报, 2018, 69(7): 3198-3207. |
Shi C, Yu J, Gao D, et al. Process simulation and economic evaluation of monoclonal antibody production[J]. CIESC Journal, 2018, 69(7): 3198-3207. | |
8 | Fahrner R L, Knudsen H L, Basey C D, et al. Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes[J]. Biotechnology and Genetic Engineering Reviews, 2001, 18(1): 301-327. |
9 | Zhang S J, Daniels W, Salm J, et al. Nature of foulants and fouling mechanism in the Protein A MabSelect resin cycled in a monoclonal antibody purification process[J]. Biotechnology and Bioengineering, 2016, 113(1): 141-149. |
10 | Shukla A A, Hinckley P. Host cell protein clearance during protein A chromatography: development of an improved column wash step[J]. Biotechnology Progress, 2008, 24(5): 1115-1121. |
11 | Levy N E, Valente K N, Choe L H, et al. Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing[J]. Biotechnology and Bioengineering, 2014, 111(5): 904-912. |
12 | Yang W C, Minkler D F, Kshirsagar R, et al. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity[J]. Journal of Biotechnology, 2016, 217: 1-11. |
13 | Papathanasiou M M, Quiroga-Campano A L, Steinebach F, et al. Advanced model-based control strategies for the intensification of upstream and downstream processing in mAb production[J]. Biotechnology Progress, 2017, 33(4): 966-988. |
14 | Brorson K, Brown J, Hamilton E, et al. Identification of protein A media performance attributes that can be monitored as surrogates for retrovirus clearance during extended re-use[J]. Journal of Chromatography A, 2003, 989(1): 155-163. |
15 | Lute S, Norling L, Hanson M, et al. Robustness of virus removal by protein A chromatography is independent of media lifetime[J]. Journal of Chromatography A, 2008, 1205: 17-25. |
16 | Zhang J, Siva S, Caple R, et al. Maximizing the functional lifetime of Protein A resins[J]. Biotechnology Progress, 2017, 33(3): 708-715. |
17 | Iskra T, Bolton G R, Coffman J L, et al. The effect of protein A cycle number on the performance and lifetime of an anion exchange polishing step[J]. Biotechnology and Bioengineering, 2013, 110(4): 1142-1152. |
18 | Wetterhall M, Ander M, Björkman T, et al. Investigation of alkaline effects on Protein A affinity ligands and resins using high resolution mass spectrometry[J]. Journal of Chromatography B, 2021, 1162: 122473. |
19 | Wetterhall M, Grönberg A, Grönlund S, et al. Removal of B. cereus cereulide toxin from monoclonal antibody bioprocess feed via two-step Protein A affinity and multimodal chromatography[J]. Journal of Chromatography B, 2019, 1118/1119: 194-202. |
20 | Bioburden:current innovations and practices to address microbial contamination in downstream bioprocessing[DB/OL]. GE Healtncare, 2017. . |
21 | Godfrey M A J, Kwasowski P, Clift R, et al. Assessment of the suitability of commercially available SpA affinity solid phases for the purification of murine monoclonal antibodies at process scale[J]. Journal of Immunological Methods, 1993, 160(1): 97-105. |
22 | Hahn R, Shimahara K, Steindl F, et al. Comparison of protein A affinity sorbents (Ⅲ): Life time study[J]. Journal of Chromatography A, 2006, 1102: 224-231. |
23 | Bolton G R, Mehta K K. The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry[J]. Biotechnology Progress, 2016, 32(5): 1193-1202. |
24 | Müller E, Vajda J. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography[J]. Journal of Chromatography B, 2016, 1021: 159-168. |
25 | 管志龙, 白姝, 孙彦, 等. 耐碱性蛋白A色谱配基的构建及性能评价[J]. 化工学报, 2017, 68(9): 3459-3465. |
Guan Z L, Bai S, Sun Y, et al. Construction and characteristics of alkali-tolerance mutants of Z domain for protein A chromatography[J]. CIESC Journal, 2017, 68(9): 3459-3465. | |
26 | Lin D Q, Fernández-Lahore H M, Kula M R, et al. Minimising biomass/adsorbent interactions in expanded bed adsorption processes:a methodological design approach[J]. Bioseparation, 2001, 10: 7-19. |
27 | 钟丽娜, 林东强, 吕淼华, 等. 扩张床中生物质颗粒与介质间相互作用的定量评价方法: 生物质脉冲响应法[J]. 化工学报, 2004, 55(11): 1908-1911. |
Zhong L N, Lin D Q, Lü M H, et al. Quantitative evaluation of biomass-adsorbent interactions in expanded bed—biomass pulse response method[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(11): 1908-1911. | |
28 | Lin D Q, Dong J N, Yao S J. Target control of cell disruption to minimize the biomass electrostatic adhesion during anion-exchange expanded bed adsorption[J]. Biotechnology Progress, 2007, 23(1): 162-167. |
29 | Lin D Q, Zhong L N, Yao S J. Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application[J]. Biotechnology and Bioengineering, 2006, 95(1): 185-191. |
30 | Feuser J, Walter J, Kula M R, et al. Cell/adsorbent interactions in expanded bed adsorption of proteins[J]. Bioseparation, 1999, 8: 99-109. |
31 | Hahn R, Schlegel R, Jungbauer A. Comparison of protein A affinity sorbents[J]. Journal of Chromatography B, 2003, 790: 35-51. |
32 | González-Valdez J, Yoshikawa A, Weinberg J, et al. Toward improving selectivity in affinity chromatography with PEGylated affinity ligands: the performance of PEGylated protein A[J]. Biotechnology Progress, 2014, 30(6): 1364-1379. |
[1] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[8] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[9] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[10] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[11] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||