CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5237-5246.DOI: 10.11949/0438-1157.20210563
• Separation engineering • Previous Articles Next Articles
Yi ZHOU1(),Yonghong WANG1,2,Xinru ZHANG1,2(),Jinping LI1,2
Received:
2021-04-22
Revised:
2021-06-24
Online:
2021-10-05
Published:
2021-10-05
Contact:
Xinru ZHANG
通讯作者:
张新儒
作者简介:
周毅(1995—),男,硕士研究生,基金资助:
CLC Number:
Yi ZHOU,Yonghong WANG,Xinru ZHANG,Jinping LI. Preparation of PEBA/N, S co-doped porous carbon sphere mixed matrix membrane for CO2 separation[J]. CIESC Journal, 2021, 72(10): 5237-5246.
周毅,王永洪,张新儒,李晋平. PEBA/氮硫共掺杂多孔碳球混合基质膜的制备及CO2分离性能研究[J]. 化工学报, 2021, 72(10): 5237-5246.
Add to citation manager EndNote|Ris|BibTeX
1 | Strassburg B B N, Iribarrem A, Beyer H L, et al. Global priority areas for ecosystem restoration[J]. Nature, 2020, 586(7831): 724-729. |
2 | Pera-Titus M. Porous inorganic membranes for CO2 capture: present and prospects[J]. Chemical Reviews, 2014, 114(2): 1413-1492. |
3 | He R R, Cong S Z, Xu S N, et al. CO2-philic mixed matrix membranes based on low-molecular-weight polyethylene glycol and porous organic polymers[J]. Journal of Membrane Science, 2021, 624: 119081. |
4 | Wang Y H, Li L, Zhang X R, et al. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation[J]. Journal of Membrane Science, 2020, 599: 117828. |
5 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
6 | Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions[J]. Progress in Polymer Science, 2014, 39(5): 817-861. |
7 | Tu R, Sun Y, Wu Y J, et al. Bio-tar-derived porous carbon with high gas uptake capacities[J]. Renewable Energy, 2021, 167: 82-90. |
8 | Sridhar S, Smitha B, Suryamurali R, et al. Synthesis, characterization and gas permeability of an activated carbon-loaded PEBAX 2533 membrane[J]. Designed Monomers and Polymers, 2008, 11(1): 17-27. |
9 | Weigelt F, Georgopanos P, Shishatskiy S, et al. Development and characterization of defect-free Matrimid® mixed-matrix membranes containing activated carbon particles for gas separation[J]. Polymers, 2018, 10(1): 51. |
10 | Haider B, Dilshad M R, Atiq ur Rehman M, et al. Highly permeable innovative PDMS coated polyethersulfone membranes embedded with activated carbon for gas separation[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103406. |
11 | Zhang W X, Liu D H, Guo X Y, et al. Fabrication of mixed-matrix membranes with MOF-derived porous carbon for CO2 separation[J]. AIChE Journal, 2018, 64(9): 3400-3409. |
12 | Heidari M, Hosseini S S, Omidkhah Nasrin M, et al. Synthesis and fabrication of adsorptive carbon nanoparticles (ACNs)/PDMS mixed matrix membranes for efficient CO2/CH4 and C3H8/CH4 separation[J]. Separation and Purification Technology, 2019, 209: 503-515. |
13 | Zhao H Y, Feng L Z, Ding X L, et al. The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2018, 564: 800-805. |
14 | Guo X F, Zhang G J, Wu C L, et al. A cost-effective synthesis of heteroatom-doped porous carbon by sulfur-containing waste liquid treatment: as a promising adsorbent for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105165. |
15 | Zhang Y, Gao J M, Feng D D, et al. Effect of magnetic field on the ammonia-based CO2 absorption process[J]. The Canadian Journal of Chemical Engineering, 2018, 96(7): 1462-1467. |
16 | Zhang D Q, Wang J X, Wang Q, et al. Nitrogen self-doped porous carbon material derived from metal-organic framework for high-performance super-capacitors[J]. Journal of Energy Storage, 2019, 25: 100904. |
17 | Rao L L, Ma R, Liu S F, et al. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance[J]. Chemical Engineering Journal, 2019, 362: 794-801. |
18 | Zhang X R, Zhang T, Wang Y H, et al. Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation[J]. Journal of Membrane Science, 2018, 560: 38-46. |
19 | Wang Y H, Zhang X R, Li J P, et al. Enhancing the CO2 separation performance of SPEEK membranes by incorporation of polyaniline-decorated halloysite nanotubes[J]. Journal of Membrane Science, 2019, 573: 602-611. |
20 | Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition, 2004, 43(5): 597-601. |
21 | Masteri-Farahani M, Ghorbani F, Mosleh N. Boric acid modified S and N co-doped graphene quantum dots as simple and inexpensive turn-on fluorescent nanosensor for quantification of glucose[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 245: 118892. |
22 | Xiao Y, Tian G, Li W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): 2508-2515. |
23 | Shao L S, Liu M Q, Huang J H, et al. CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers[J]. Journal of Colloid and Interface Science, 2018, 513: 304-313. |
24 | Bandosz T J, Seredych M, Rodríguez-Castellón E, et al. Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions[J]. Carbon, 2016, 96: 856-863. |
25 | Zhuang Q Q, Cao J P, Wu Y, et al. Heteroatom nitrogen and oxygen co-doped three-dimensional honeycomb porous carbons for methylene blue efficient removal[J]. Applied Surface Science, 2021, 546: 149139. |
26 | Li J Y, Hou M L, Chen Y Q, et al. Enhanced CO2 capture on graphene via N, S dual-doping[J]. Applied Surface Science, 2017, 399: 420-425. |
27 | Wang Y H, Li L, Zhang X R, et al. Polyvinylamine/graphene oxide/PANI@CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance[J]. Journal of Membrane Science, 2019, 589: 117246. |
28 | Rahman M M, Filiz V, Shishatskiy S, et al. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation[J]. Journal of Membrane Science, 2013, 437: 286-297. |
29 | Comesaña-Gándara B, Chen J, Bezzu C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740. |
30 | Murali R S, Sridhar S, Sankarshana T, et al. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2010, 49(14): 6530-6538. |
31 | Dong G Y, Hou J W, Wang J, et al. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 860-868. |
32 | Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture[J]. Journal of Membrane Science, 2014, 459: 244-255. |
[1] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[2] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[3] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[4] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[5] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[6] | Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk [J]. CIESC Journal, 2023, 74(2): 861-870. |
[7] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[8] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[9] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[10] | Renhua PEI, Yonghong WANG, Xinru ZHANG, Jinping LI. Synergistic of carbon nanotube/cyclodextrin metal organic framework for enhancing CO2 separation of mixed matrix membranes [J]. CIESC Journal, 2022, 73(9): 3904-3914. |
[11] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[12] | Liwei WANG, Juanjuan WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Gas transport properties of PVAm-based mixed matrix membranes by incorporating with Cu3(BTC)2-MMT-NH2 [J]. CIESC Journal, 2022, 73(7): 3068-3077. |
[13] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
[14] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[15] | Chao JI, Wei LIU, Hong QI. Flue gas dehumidification through air cooling enhanced by hydrophobic ceramic membranes [J]. CIESC Journal, 2022, 73(5): 2174-2182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||