CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 4973-4986.DOI: 10.11949/0438-1157.20210404
• Reviews and monographs • Previous Articles Next Articles
Changhui LIU1(),Haiyue ZHANG1,Yemei LI1,Tianjian ZHANG1,Yanlong GU2()
Received:
2021-03-22
Revised:
2021-05-18
Online:
2021-10-05
Published:
2021-10-05
Contact:
Yanlong GU
通讯作者:
顾彦龙
作者简介:
刘昌会(1987—),男,博士,副教授,基金资助:
CLC Number:
Changhui LIU,Haiyue ZHANG,Yemei LI,Tianjian ZHANG,Yanlong GU. Recent advances of deep eutectic solvents in energy storage and heat transfer[J]. CIESC Journal, 2021, 72(10): 4973-4986.
刘昌会,张海悦,李业美,张天键,顾彦龙. 低共熔溶剂在储能与传热方面的研究进展[J]. 化工学报, 2021, 72(10): 4973-4986.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 The thermal conductivity of DES aqueous solution varied with the mass fraction of DES(solid line represents the correlation of the Filippov model)[78]
1 | Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications (Cambridge, England), 2003(1): 70-71. |
2 | Zhang Q H, de Oliveira Vigier K, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews, 2012, 41(21): 7108-7146. |
3 | Zeng C X, Qi S J, Xin R P, et al. Synergistic behavior of betaine-urea mixture: formation of deep eutectic solvent[J]. Journal of Molecular Liquids, 2016, 219: 74-78. |
4 | 张盈盈, 陆小华, 冯新, 等. 胆碱类低共熔溶剂的物性及应用[J]. 化学进展, 2013, 25(6): 881-892. |
Zhang Y Y, Lu X H, Feng X, et al. Properties and applications of choline-based deep eutectic solvents[J]. Progress in Chemistry, 2013, 25(6): 881-892. | |
5 | Zhang J W, Kuang Q, Jiang Y Q, et al. Engineering high-energy surfaces of noble metal nanocrystals with enhanced catalytic performances[J]. Nano Today, 2016, 11(5): 661-677. |
6 | Sebest F, Casarrubios L, Rzepa H S, et al. Thermal azide-alkene cycloaddition reactions: straightforward multi-gram access to Δ2-1, 2, 3-triazolines in deep eutectic solvents[J]. Green Chemistry, 2018, 20(17): 4023-4035. |
7 | Cicco L, Ríos-Lombardía N, Rodríguez-Álvarez M J, et al. Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in deep eutectic solvents as biorenewable reaction media[J]. Green Chemistry, 2018, 20(15): 3468-3475. |
8 | Cicco L, Rodríguez-Álvarez M J, Perna F M, et al. One-pot sustainable synthesis of tertiary alcohols by combining ruthenium-catalysed isomerisation of allylic alcohols and chemoselective addition of polar organometallic reagents in deep eutectic solvents[J]. Green Chemistry, 2017, 19(13): 3069-3077. |
9 | Alhassan Y, Kumar N, Bugaje I M. Hydrothermal liquefaction of de-oiled Jatropha curcas cake using deep eutectic solvents (DESs) as catalysts and co-solvents[J]. Bioresource Technology, 2016, 199: 375-381. |
10 | Xia Q Q, Liu Y Z, Meng J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry, 2018, 20(12): 2711-2721. |
11 | Kim K H, Dutta T, Sun J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20(4): 809-815. |
12 | Tan X X, Zhao W C, Mu T C. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes[J]. Green Chemistry, 2018, 20(15): 3625-3633. |
13 | Yang C, Gao M Y, Zhang Q B, et al. In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction[J]. Nano Energy, 2017, 36: 85-94. |
14 | Zhang J, Wu T, Chen S M, et al. Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage[J]. Angewandte Chemie International Edition, 2009, 48(19): 3486-3490. |
15 | Hammond O S, Edler K J, Bowron D T, et al. Deep eutectic-solvothermal synthesis of nanostructured ceria[J]. Nature Communications, 2017, 8: 14150. |
16 | Yang D Z, Hou M Q, Ning H, et al. Efficient SO2 absorption by renewable choline chloride-glycerol deep eutectic solvents[J]. Green Chemistry, 2013, 15(8): 2261. |
17 | Wagle D V, Zhao H, Baker G A. Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Accounts of Chemical Research, 2014, 47(8): 2299-2308. |
18 |
Liu C H, Jiang P, Huo Y X, et al. Experimental study on ethylene glycol/choline chloride deep eutectic solvent system based nanofluids[J]. Heat and Mass Transfer, 2021, DOI: https://doi.org/10.1007/s00231-021-03030-z.
DOI URL |
19 | 方春香. 中低温定形相变储能材料的研究[D]. 北京: 北京工业大学, 2006. |
Fang C X. The study of stabilized phase change materials used at middling and low temperature[D]. Beijing: Beijing University of Technology, 2006. | |
20 | Ke H Z. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Applied Thermal Engineering, 2017, 113: 1319-1331. |
21 | Yuan Y P, Tao W Q, Cao X L, et al. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2889-2891. |
22 | Lv S L, Zhu N, Feng G H. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage[J]. Energy and Buildings, 2006, 38(6): 708-711. |
23 | 刘欣, 高学农, 方玉堂. 相变储热材料Na2SO4·10H2O的过冷和相分离研究[J]. 节能技术, 2012, 30(6): 499-503. |
Liu X, Gao X N, Fang Y T. Review on supercooling and phase separation occurring of Na2SO4·10H2O[J]. Energy Conservation Technology, 2012, 30(6): 499-503. | |
24 | Hu H Y, Jin X, Zhang X S. Effect of supercooling on the solidification process of the phase change material[J]. Energy Procedia, 2017, 105: 4321-4327. |
25 | 朱思贤, 邹得球, 鲍家明, 等. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082. |
Zhu S X, Zou D Q, Bao J M, et al. Supercooling characteristics and its adjustment of phase change material: a review[J]. Materials Reports, 2020, 34(19): 19075-19082. | |
26 | Ushak S, Gutierrez A, Galleguillos H, et al. Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM[J]. Solar Energy Materials and Solar Cells, 2015, 132(132): 385-391. |
27 | 于永生, 井强山, 孙雅倩. 低温相变储能材料研究进展[J]. 化工进展, 2010, 29(5): 896-900, 913. |
Yu Y S, Jing Q S, Sun Y Q. Progress in studies of low temperature phase-change energy storage materials[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 896-900, 913. | |
28 | 于永生. 珍珠岩复合相变储能材料制备与应用研究[D]. 信阳: 信阳师范学院, 2011. |
Yu Y S. Preparation and application of perlite composite phase change energy storage material[D]. Xinyang: Xinyang Normol University, 2011. | |
29 | 张寅平. 相变贮能: 理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996: 202-205. |
Zhang Y P. Phase Change Energy Storage: Theory and Application[M]. Hefei: University of Science and Technology of China Press, 1996: 202-205. | |
30 | 阮德水, 张太平, 张道圣, 等. 水合盐相变热长期贮存的研究[J]. 太阳能学报, 1993, 14(1): 16-22. |
Ruan D S, Zhang T P, Zhang D S, et al. Study on long-term heat storage using molten salt hydrates[J]. Acta Energiae Solaris Sinica, 1993, 14(1): 16-22. | |
31 | 李卫萍, 阮德水, 胡起柱, 等. CaCl2·6H2O-MgCl2·6H2O多温截面的研究[J]. 华中师范大学学报(自然科学版), 1998, 32(1): 74-76. |
Li W P, Ruan D S, Hu Q Z, et al. CaCl2·6H2O-MgCl2·6H2O Study on multi temperature cross section[J]. Journal of Central China Normal University (Nature Sciences), 1998, 32(1): 74-76. | |
32 | 阮德水, 黎厚斌, 张太平, 等. 磷酸氢二钠及其低共熔物贮热性能研究[J]. 太阳能学报, 1991, 12(4): 368-372. |
Ruan D S, Li H B, Zhang T P, et al. Studies on heat storage properties of Na2HPO4·12H2O and its eutectic mixtures[J]. Acta Energiae Solaris Sinica, 1991, 12(4): 368-372. | |
33 | 刘平. 基于PCM的新型建筑节能材料的研究[D]. 南京: 东南大学, 2012. |
Liu P. Design and development of new energy saving building materials based on phase change energy storage materials[D]. Nanjing: Southeast University, 2012. | |
34 | 祝丹婷, 钱静, 蔡蓉. 混合水合盐作为储热相变材料的热物性能研究[J]. 包装工程, 2015, 36(1): 65-69. |
Zhu D T, Qian J, Cai R. Thermal characteristics of hydrated salt mixture as a phase change material for heat storage[J]. Packaging Engineering, 2015, 36(1): 65-69. | |
35 | 吴希杰. 低共熔物相变储能复合材料的制备与热性能[D]. 济南: 齐鲁工业大学, 2018. |
Wu X J. Preparation and thermal properties of eutectic phase change energy storage composites[D]. Jinan: Qilu University of Technology, 2018. | |
36 |
Pichandi R, Murugavel Kulandaivelu K, Alagar K, et al. Performance enhancement of photovoltaic module by integrating eutectic inorganic phase change material[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, DOI: 10.1080/15567036.2020.1817185.
DOI URL |
37 | 乔英钧. 水合盐低共熔相变储能材料的制备与性能研究[D]. 西宁: 中国科学院青海盐湖研究所, 2018. |
Qiao Y J. Preparation and properties of eutectic phase change energy storage material of hydrated salt[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2018. | |
38 | Athienitis A K, Liu C, Hawes D, et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage[J]. Building and Environment, 1997, 32(5): 405-410. |
39 | Ryu H W, Woo S W, Shin B C, et al. Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 161-172. |
40 | Cai Y B, Song X F, Liu M M, et al. Flexible cellulose acetate nano-felts absorbed with capric-myristic-stearic acid ternary eutectic mixture as form-stable phase-change materials for thermal energy storage/retrieval[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(2): 661-673. |
41 | Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
42 | Basal G, Sirin Deveci S, Yalcin D, et al. Properties of n-eicosane-loaded silk fibroin-chitosan microcapsules[J]. Journal of Applied Polymer Science, 2011, 121(4): 1885-1889. |
43 | Song G L, de Ma S, Tang G Y, et al. Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide[J]. Energy, 2010, 35(5): 2179-2183. |
44 | Esakkimuthu S, Hassabou A H, Palaniappan C, et al. Experimental investigation on phase change material based thermal storage system for solar air heating applications[J]. Solar Energy, 2013, 88: 144-153. |
45 | Pan L, Tao Q H, Zhang S D, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials[J]. Solar Energy Materials and Solar Cells, 2012, 98: 66-70. |
46 | Kim S, Drzal L T. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials and Solar Cells, 2009, 93(1): 136-142. |
47 | Sari A, Sarı H, Önal A. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials[J]. Energy Conversion and Management, 2004, 45(3): 365-376. |
48 | 孟多, 王安琪, 朱婉菁. 二元低共熔相变石蜡的制备及热性能研究[J]. 新型建筑材料, 2018, 45(11): 79-83. |
Meng D, Wang A Q, Zhu W J. Preparation and thermo-properties of the binary phase change paraffin eutectic[J]. New Building Materials, 2018, 45(11): 79-83. | |
49 | 王淑萍, 徐涛, 高学农, 等. 膨胀石墨基复合相变储能材料的研究进展[J]. 储能科学与技术, 2014, 3(3): 210-215. |
Wang S P, Xu T, Gao X N, et al. Recent progress about expanded graphite matrix composite phase change material for energy storage[J]. Energy Storage Science and Technology, 2014, 3(3): 210-215. | |
50 | 曹乃珍, 沈万慈, 温诗铸, 等. 膨胀石墨制备及微孔结构相关性研究[J]. 材料科学与工艺, 1997, 5(2): 124-126. |
Cao N Z, Shen W C, Wen S Z, et al. Relationship between the making of expanded graphite and its related microporous structure[J]. Material Science and Technology, 1997, 5(2): 124-126. | |
51 | 张正国, 王学泽, 方晓明. 石蜡/膨胀石墨复合相变材料的结构与热性能[J]. 华南理工大学学报(自然科学版), 2006, 34(3): 1-5. |
Zhang Z G, Wang X Z, Fang X M. Structure and thermal properties of composite paraffin/expanded graphite phase-change material[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(3): 1-5. | |
52 | 杨护霞, 宣艳, 杜珊, 等. 纳米氧化铝粉体的相变研究[J]. 攀枝花学院学报, 2007, 24(6): 3-8. |
Yang H X, Xuan Y, Du S, et al. The study of phase transformation on Al2O3 powders crystalline[J]. Journal of Panzhihua University, 2007, 24(6): 3-8. | |
53 | 杨媛媛, 薛微, 张云霞, 等. TiO2/膨胀石墨复合材料的制备及其对亚甲基兰的光催化降解[J]. 化工新型材料, 2007, 35(10): 1-3, 27. |
Yang Y Y, Xue W, Zhang Y X, et al. Preparation of TiO2/exfoliated-graphite composite and photocatalytic degradation of methylene blue[J]. New Chemical Materials, 2007, 35(10): 1-3, 27. | |
54 | 赵纪金, 李晓霞, 豆正伟. 红外/毫米波干扰一体化材料: 膨胀石墨的研究动态[J]. 红外技术, 2010, 32(7): 399-402, 407. |
Zhao J J, Li X X, Dou Z W. Research status of exfoliated graphite attenuating infrared/millimeter-wave simultaneously[J]. Infrared Technology, 2010, 32(7): 399-402, 407. | |
55 | 赵颖华, 李登新. 改性膨胀石墨对含铅废水吸附特性[J]. 环境工程学报, 2012, 6(10): 3613-3617. |
Zhao Y H, Li D X. Adsorption characteristics of modified expanded graphite to wastewater containing lead[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3613-3617. | |
56 | 赵颖华, 金程, 李登新. 膨胀石墨对废水中铬的吸附研究[J]. 环境科学与技术, 2012, 35(4): 149-152. |
Zhao Y H, Jin C, Li D X. Adsorption of Cr(Ⅵ) in wastewater on expanded graphite[J]. Environmental Science & Technology, 2012, 35(4): 149-152. | |
57 | 马烽, 王晓燕, 程立媛. 癸酸-月桂酸/膨胀石墨相变储能材料的制备及性能研究[J]. 功能材料, 2010, 41(S1): 180-183. |
Ma F, Wang X Y, Cheng L Y. Study on preparation and properties of capric acid-lauric acid/expanded graphite phase change materials[J]. Journal of Functional Materials, 2010, 41(S1): 180-183. | |
58 | 马烽, 李艳, 程立媛, 等. 十八烷-棕榈酸/膨胀石墨相变储能材料的制备与性能[J]. 航空材料学报, 2010, 30(3): 66-69. |
Ma F, Li Y, Cheng L Y, et al. Preparation and properties of octadecane-palmitic acid/expanded graphite phase change energy storage materials[J]. Journal of Aeronautical Materials, 2010, 30(3): 66-69. | |
59 | 孟新, 张焕芝, 赵梓名, 等. 三元脂肪酸/膨胀石墨复合相变材料的制备、包覆定形及热性能[J]. 高等学校化学学报, 2012, 33(3): 526-530. |
Meng X, Zhang H Z, Zhao Z M, et al. Preparation, encapsulation and thermal properties of fatty acid/expanded graphite composites as shape-stabilized phase change materials[J]. Chemical Journal of Chinese Universities, 2012, 33(3): 526-530. | |
60 | Yang X J, Yuan Y P, Zhang N, et al. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage[J]. Solar Energy, 2014, 99: 259-266. |
61 | Zhang N, Yuan Y P, Wang X, et al. Preparation and characterization of lauric-myristic-palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage[J]. Chemical Engineering Journal, 2013, 231: 214-219. |
62 | Huang Z W, Gao X N, Xu T, et al. Thermal property measurement and heat storage analysis of LiNO3/KCl - expanded graphite composite phase change material[J]. Applied Energy, 2014, 115: 265-271. |
63 | 张正国, 文磊, 方晓明, 等. 复合相变储热材料的研究与发展[J]. 化工进展, 2003, 22(5): 462-465. |
Zhang Z G, Wen L, Fang X M, et al. Research and development on composite phase change thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2003, 22(5): 462-465. | |
64 | 杨颖, 张伟, 董昭, 等. 冷藏车用新型复合相变蓄冷材料的制备及热性能研究[J]. 化工新型材料, 2013, 41(11): 41-43. |
Yang Y, Zhang W, Dong Z, et al. Preparation and thermal performance of new composite phase change storage materials for refrigerator car[J]. New Chemical Materials, 2013, 41(11): 41-43. | |
65 | Dimaano M N R, Watanabe T. The capric-lauric acid and pentadecane combination as phase change material for cooling applications[J]. Applied Thermal Engineering, 2002, 22(4): 365-377. |
66 | Fauzi H, Metselaar H S C, Mahlia T M I, et al. Phase change material: optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants[J]. Applied Thermal Engineering, 2013, 60(1/2): 261-265. |
67 | Sun J, Fu L, Zhang S G. A review of working fluids of absorption cycles[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 1899-1906. |
68 | Chen H J, Goswami D Y, Stefanakos E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 3059-3067. |
69 | Navas J, Martínez-Merino P, Sánchez-Coronilla A, et al. MoS2 nanosheets vs. nanowires: preparation and a theoretical study of highly stable and efficient nanofluids for concentrating solar power[J]. Journal of Materials Chemistry A, 2018, 6(30): 14919-14929. |
70 | Xu X C, Peng C J, Cao G P, et al. Application of a new lattice-fluid equation of state based on chemical-association theory for polymer systems[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7828-7837. |
71 | Zaera F. Nanostructured materials for applications in heterogeneous catalysis[J]. Chemical Society Reviews, 2013, 42(7): 2746-2762. |
72 | Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. |
73 | Gautam R K, Seth D. Thermal conductivity of deep eutectic solvents[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(6): 2633-2640. |
74 | Kučan K Z, Rogošić M. Purification of motor fuels by means of extraction using deep eutectic solvent based on choline chloride and glycerol[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(4): 1282-1293. |
75 | Gautam R K, Seth D. Thermal conductivity of deep eutectic solvents[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(6): 2633-2640. |
76 | Singh A, Walvekar R, Khalid M, et al. Thermophysical properties of glycerol and polyethylene glycol (PEG 600) based DES[J]. Journal of Molecular Liquids, 2018, 252: 439-444. |
77 | 王高洁, 陈静, 董家新. 低共熔溶剂的热化学研究[C]//中国化学会化学热力学和热分析专业委员会.中国化学会成立80周年第十六届全国化学热力学和热分析学术会议论文集. 武汉: 中国化学会化学热力学和热分析专业委员会, 2012. |
Wang G J, Chen J, Dong J X. Thermochemical study of eutectic solvent[C]//Professional Committee of Chemical Thermodynamics and Thermal Analysis of the Chinese Chemical Society. Proceedings of the 16th National Conference on Chemical Thermodynamics and Thermal Analysis of the 80th Anniversary of the Founding of the Chinese Chemical Society. Wuhan: Professional Committee of Chemical Thermodynamics and Thermal Analysis of the Chinese Chemical Society, 2012. | |
78 | Ibrahim T H, Sabri M A, Abdel Jabbar N, et al. Thermal conductivities of choline chloride-based deep eutectic solvents and their mixtures with water: measurement and estimation[J]. Molecules, 2020, 25(17): 3816. |
79 | Ge R L, Hardacre C, Nancarrow P, et al. Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K[J]. Journal of Chemical & Engineering Data, 2007, 52(5): 1819-1823. |
80 | 陈文君, 薛智敏, 王晋芳, 等. 低共熔溶剂的热稳定性研究[J]. 物理化学学报, 2018, 34(8):904-911. |
Chen W J, Xue Z M, Wang J F, et al. Investigation on the thermal stability of deep eutectic solvents[J]. Acta Physico-Chimica Sinica, 2018, 34(8):904-911. | |
81 | Choi S U S. Nanofluids: from vision to reality through research[J]. Journal of Heat Transfer, 2009, 131(3): 033106. |
82 | Wasan D T, Nikolov A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936): 156-159. |
83 | Lan Z, Ma X H, Wang S F, et al. Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156(3): 546-552. |
84 | Sheikholeslami M, Shehzad S A, Li Z X. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces[J]. International Journal of Heat and Mass Transfer, 2018, 125: 375-386. |
85 | Sheikholeslami M, Shehzad S A. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1200-1212. |
86 | Sheikholeslami M, Shah Z, Shafee A, et al. Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle[J]. Scientific Reports, 2019, 9(1): 1196. |
87 | Maji N C, Krishna H P, Chakraborty J. Low-cost and high-throughput synthesis of copper nanopowder for nanofluid applications[J]. Chemical Engineering Journal, 2018, 353: 34-45. |
88 | Sheikholeslami M, Jafaryar M, Saleem S, et al. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators[J]. International Journal of Heat and Mass Transfer, 2018, 126: 156-163. |
89 | Sheikholeslami M, Li Z X, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system[J]. International Journal of Heat and Mass Transfer, 2018, 127: 665-674. |
90 | Chen Y, Yu D K, Lu Y H, et al. Volatility of deep eutectic solvent choline chloride: N-methylacetamide at ambient temperature and pressure[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7308-7317. |
91 | Liu C H, Fang H, Qiao Y, et al. Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 138: 690-698. |
92 | Hou X, Wang M, Fu L, et al. Boron nitride nanosheet nanofluids for enhanced thermal conductivity[J]. Nanoscale, 2018, 10(27): 13004-13010. |
93 | 刘昌会, 刘红莉, 张天键, 等. 基于尿素/氯化胆碱低共熔溶剂体系纳米流体制备及其热物性研究[J]. 化工学报, 2021, 72(3): 1333-1341. |
Liu C H, Liu H L, Zhang T J, et al. Preparation and thermal physical properties of nanofluids based on a urea/choline chloride deep eutectic solvent system[J]. CIESC Journal, 2021, 72(3): 1333-1341. | |
94 | Fang Y K, Osama M, Rashmi W, et al. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids[J]. Nanotechnology, 2016, 27(7): 075702. |
95 | Dehury P, Singh J, Banerjee T. Thermophysical and forced convection studies on (alumina + menthol)-based deep eutectic solvents for their use as a heat transfer fluid[J]. ACS Omega, 2018, 3(12): 18016-18027. |
96 | Sirviö J A. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent[J]. Journal of Materials Chemistry A, 2019, 7(2): 755-763. |
97 | Abo-Hamad A, Hayyan M, AlSaadi M A, et al. Potential applications of deep eutectic solvents in nanotechnology[J]. Chemical Engineering Journal, 2015, 273: 551-567. |
98 | Abdullah M, Malik S R, Iqbal M H, et al. Sedimentation and stabilization of nano-fluids with dispersant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 86-92. |
99 | Yu W, Xie H Q, Wang X P, et al. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets[J]. Physics Letters A, 2011, 375(10): 1323-1328. |
100 | Liu C H, Fang H, Liu X J, et al. Novel silica filled deep eutectic solvent based nanofluids for energy transportation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 20159-20169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||