CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4511-4522.DOI: 10.11949/0438-1157.20210512
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Chenyue LIU1(),Tong ZHENG1,Yuanbo LIU1,Rongfu WEN1,Kai CHEN2,Xuehu MA1()
Received:
2021-04-14
Revised:
2021-05-27
Online:
2021-09-05
Published:
2021-09-05
Contact:
Xuehu MA
刘辰玥1(),郑通1,刘渊博1,温荣福1,陈凯2,马学虎1()
通讯作者:
马学虎
作者简介:
刘辰玥(1995—),女,硕士研究生,CLC Number:
Chenyue LIU, Tong ZHENG, Yuanbo LIU, Rongfu WEN, Kai CHEN, Xuehu MA. Shell side high efficiency and low resistance performance of heat exchanger with bionic structures[J]. CIESC Journal, 2021, 72(9): 4511-4522.
刘辰玥, 郑通, 刘渊博, 温荣福, 陈凯, 马学虎. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报, 2021, 72(9): 4511-4522.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Structure diagram and baffle arrangement of special-shaped heat exchanger with bionic structures [The blue area in Fig. (d) and (e) represents the water collecting tank]
换热器设计参数 | 数值 |
---|---|
弧度/(°) | 60 |
内半径/mm | 503.5 |
宽度/mm | 145 |
进出口直径/mm | 80 |
换热管尺寸/mm | ?20×2 |
换热管长度/mm | 750 |
换热管中心距/mm | 27 |
换热管数量 | 50 |
Table 1 Tube and shell design parameters of special-shaped heat exchanger with bionic structures
换热器设计参数 | 数值 |
---|---|
弧度/(°) | 60 |
内半径/mm | 503.5 |
宽度/mm | 145 |
进出口直径/mm | 80 |
换热管尺寸/mm | ?20×2 |
换热管长度/mm | 750 |
换热管中心距/mm | 27 |
换热管数量 | 50 |
换热器内部设计元件 | 设计参数 | 数值 |
---|---|---|
折流板 | 折流板厚度/mm | 5 |
折流板数量 | 4 | |
折流板①和③缺口弧度占整体弧度的比例 | 29% | |
折流板②和④缺口宽度占整体宽度的比例 | 28%、26% | |
进口折流板处间隙 | 进口处管板间隙/mm | 1.5 |
Table 2 Internal design parameters of SSBHX-SG, SSBHX-ST and SSBHX-CST
换热器内部设计元件 | 设计参数 | 数值 |
---|---|---|
折流板 | 折流板厚度/mm | 5 |
折流板数量 | 4 | |
折流板①和③缺口弧度占整体弧度的比例 | 29% | |
折流板②和④缺口宽度占整体宽度的比例 | 28%、26% | |
进口折流板处间隙 | 进口处管板间隙/mm | 1.5 |
设计参数 | 数值 |
---|---|
进出口集水箱高度/mm | 120 |
阶梯式隔板缺口弧度占整体弧度的比例 | 29%、54%、79% |
隔板数量 | 4 |
Table 3 Design parameters of SSBHX-FA and SSBHX-LA
设计参数 | 数值 |
---|---|
进出口集水箱高度/mm | 120 |
阶梯式隔板缺口弧度占整体弧度的比例 | 29%、54%、79% |
隔板数量 | 4 |
物理性质 | 数值 |
---|---|
ρ/(kg/m3) | 1025 |
cp/(J/(kg·K)) | 3890 |
λ/(W/(m·K)) | 0.634 |
μ/(Pa·s) | 0.0008545 |
Table 4 Thermophysical parameters of shell side fluid
物理性质 | 数值 |
---|---|
ρ/(kg/m3) | 1025 |
cp/(J/(kg·K)) | 3890 |
λ/(W/(m·K)) | 0.634 |
μ/(Pa·s) | 0.0008545 |
1 | Duan Z Y, Shen F, Cao X, et al. Comprehensive effects of baffle configuration on the performance of heat exchanger with helical baffles[J]. Nuclear Engineering and Design, 2016, 300: 349-357. |
2 | Zhang J F, He Y L, Tao W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles(I): Numerical model and results of whole heat exchanger with middle-overlapped helical baffles[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5371-5380. |
3 | Jian W, Yang H Z, Wang S M, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 89: 438-448. |
4 | Cao X, Du T T, Liu Z, et al. Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118437. |
5 | Gao B, Bi Q C, Nie Z S, et al. Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles[J]. Experimental Thermal and Fluid Science, 2015, 68: 48-57. |
6 | Wen J, Gu X, Wang M M, et al. Multi-parameter optimization of shell-and-tube heat exchanger with helical baffles based on entransy theory[J]. Applied Thermal Engineering, 2018, 130: 804-813. |
7 | Dong C, Li D S, Zheng Y Q, et al. An efficient and low resistant circumferential overlap trisection helical baffle heat exchanger with folded baffles[J]. Energy Conversion and Management, 2016, 113: 143-152. |
8 | 刘秀峰, 张诗, 周志杰, 等. 换热器结构优化与换热性能评价指标研究[J]. 化工学报, 2020, 71: 98-105. |
Liu X F, Zhang S, Zhou Z J, et al. Study on structure optimization of heat exchanger and evaluation index of heat transfer performance[J]. CIESC Journal, 2020, 71: 98-105. | |
9 | 曹兴, 杜文静, 程林. 连续螺旋折流板换热器流动与传热性能及熵产分析[J]. 化工学报, 2012, 63(8): 2375-2382. |
Cao X, Du W J, Cheng L. Analyses on flow and heat transfer performance and entropy generation of heat exchanger with continuous helical baffles[J]. CIESC Journal, 2012, 63(8): 2375-2382. | |
10 | Wang Q W, Chen G D, Chen Q Y, et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(10): 836-853. |
11 | Wang Y S, Liu Z C, Huang S Y, et al. Experimental investigation of shell-and-tube heat exchanger with a new type of baffles[J]. Heat and Mass Transfer, 2011, 47(7): 833-839. |
12 | Chen J, Zhao P B, Wang Q W, et al. Experimental investigation of shell-side performance and optimal design of shell-and-tube heat exchanger with different flower baffles[J]. Heat Transfer Engineering, 2021, 42(7): 613-626. |
13 | You Y H, Fan A W, Huang S Y, et al. Numerical modeling and experimental validation of heat transfer and flow resistance on the shell side of a shell-and-tube heat exchanger with flower baffles[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7561-7569. |
14 | Biçer N, Engin T, Yaşar H, et al. Design optimization of a shell-and-tube heat exchanger with novel three-zonal baffle by using CFD and Taguchi method[J]. International Journal of Thermal Sciences, 2020, 155: 106417. |
15 | Lei Y G, Li Y Z, Jing S L, et al. Design and performance analysis of the novel shell-and-tube heat exchangers with louver baffles[J]. Applied Thermal Engineering, 2017, 125: 870-879. |
16 | Yang S F, Chen Y P, Wu J F, et al. Investigation on shell side performance in half-cylindrical desuperheating zone of ladder type helical baffle heat exchangers[J]. Applied Thermal Engineering, 2020, 175: 115334. |
17 | Chen J, Lu X, Wang Q W, et al. Experimental investigation on thermal-hydraulic performance of a novel shell-and-tube heat exchanger with unilateral ladder type helical baffles[J]. Applied Thermal Engineering, 2019, 161: 114099. |
18 | Xiao J, Wang S M, Ye S P, et al. Experimental investigation on pre-heating technology of coal water slurry with different concentration in shell-and-tube heat exchangers with ladder-type fold baffles[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1116-1125. |
19 | 古新, 罗元坤, 熊晓朝, 等. 扭转流换热器结构参数对流场和温度场的影响[J]. 化工学报, 2018, 69(8): 3390-3397. |
Gu X, Luo Y K, Xiong X C, et al. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field[J]. CIESC Journal, 2018, 69(8): 3390-3397. | |
20 | 古新, 秦晓柯, 王永庆, 等. 倾斜折流栅式换热器壳程流体流动与传热特性[J]. 化工进展, 2017, 36(10): 3584-3589. |
Gu X, Qin X K, Wang Y Q, et al. Research on fluid flow and heat transfer characteristics in shell side of inclined shutter baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3584-3589. | |
21 | 孟芳. 螺旋折流板管壳式换热器的CFD模拟研究[D]. 天津: 天津大学, 2015. |
Meng F. CFD simulation of shell-and-tube heat exchanger with helical baffles[D]. Tianjin: Tianjin University, 2015. | |
22 | 王英双, 张晓屿, 刘志春, 等. 花格板换热器的流动与传热[J]. 化工学报, 2012, 63: 99-106. |
Wang Y S, Zhang X Y, Liu Z C, et al. Fluid flow and heat transfer study for flower baffle heat exchanger[J]. CIESC Journal, 2012, 63: 99-106. | |
23 | 陈康, 姚志崇, 周恩东, 等. 基于体积力的海水自流循环系统流速确定方法[J]. 中国舰船研究, 2019, 14(5): 70-76. |
Chen K, Yao Z C, Zhou E D, et al. Body force-based method for determining flow velocity of sea water artesian circulating system [J]. Chinese Journal of Ship Research, 2019, 14(5): 70-76. | |
24 | 刘明明. 鲨鱼鳃部结构分析及仿生射流减阻特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
Liu M M. Structure analysis of shark gills and research on bionic jet drag reduction characteristic[D]. Harbin: Harbin Engineering University, 2014. | |
25 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.热交换器:[S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Heat exchangers: [S]. Beijing: Standards Press of China, 2015. | |
26 | 董其伍, 欧阳克, 刘敏珊, 等. 茹卡乌斯卡斯横掠错排管束实验模型的数值模拟[J]. 压力容器, 2010, 27(1): 21-26. |
Dong Q W, Ouyang K, Liu M S, et al. Numerical investigation of fluid flow across tube bundles in Zukauskas experimental model[J]. Pressure Vessel Technology, 2010, 27(1): 21-26. | |
27 | 茹卡乌斯卡斯, A A. 换热器内的对流传热[M]. 马昌文, 居滋象, 肖宏才, 译. 北京: 科学出版社, 1986: 66-77,317-329. |
Жукаускас А А. Convective Heat Transfer in Heat Exchanger[M]. Ma C W, Ju Z X, Xiao H C, trans. Beijing: Science Press, 1986: 66-77, 317-329. | |
28 | 赖利, 斯基罗. 化学海洋学[M]. 吴瑜端, 杨逸萍, 译.2版. 北京:海洋出版社, 1984: 555-564. |
Riley J P, Skirrow G. Chemical Oceanography[M]. Wu Y D, Yang Y P, trans. 2nd ed. Beijing: Ocean Press, 1984: 555-564. | |
29 | Guo Z Y, Zhou S Q, Li Z X, et al. Theoretical analysis and experimental confirmation of the uniformity principle of temperature difference field in heat exchanger[J]. International Journal of Heat and Mass Transfer, 2002, 45(10): 2119-2127. |
30 | Webb R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726. |
31 | Wang X T, Zheng N B, Liu Z C, et al. Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles[J]. International Journal of Heat and Mass Transfer, 2018, 124: 247-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||