CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2774-2789.DOI: 10.11949/0438-1157.20220383

• Reviews and monographs • Previous Articles     Next Articles

Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals

Mai ZHANG1,2(),Yao TIAN1,2,Zhiqi GUO1,2,Ye WANG1,2,Guangjin DOU1,2,Hao SONG1,2()   

  1. 1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
  • Received:2022-03-16 Revised:2022-05-25 Online:2022-08-01 Published:2022-07-05
  • Contact: Hao SONG

光催化-生物杂合系统设计优化用于燃料和化学品绿色合成

张劢1,2(),田瑶1,2,郭之旗1,2,王叶1,2,窦广进1,2,宋浩1,2()   

  1. 1.天津大学化工学院,天津 300072
    2.天津大学合成生物学前沿科学中心和系统生物工程教育部;重点实验室,天津 300072
  • 通讯作者: 宋浩
  • 作者简介:张劢(1997—),女,硕士研究生,m15002206082@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFA0901300);国家自然科学基金项目(21621004);青岛市海洋工程与技术智库联合基金项目(201707051002)

Abstract:

By combining the advantages of photocatalysis and biocatalysis, photocatalysis-biological hybrid system could achieve high light collection efficiency and broad spectrum absorption, as well as the mild, efficient and specificity reaction process. On this basis, green and sustainable synthesis of various high-value compounds could be realized, which is in line with the development direction of “carbon neutral”. Photocatalysis-biological hybrid system can be classified into photocatalysis-enzyme hybrid system and photocatalysis-microbial hybrid system. The former can be divided into indirect reaction system based on cofactor-mediated, directly electron transfer reaction system and mixed photocatalysic-enzyme hybrid system, according to the catalytic mechanism. The latter can be divided into extracellular energy supply mode based on directly electron transfer, extracellular energy supply mode based on chemical-mediated, and intracellular energy supply mode. A comprehensive review is made on the specific mechanism of these models, their advantages and disadvantages, and key issues, and a future prospect in this field is proposed.

Key words: biocatalysis, bioenergy, CO2 capture, photocatalysis, hybrid system

摘要:

光催化-生物杂合系统耦合了光催化对光能的高收集效率和广谱吸收性能,以及生物催化温和、高效且高特异性转化的优势,可实现多种高值化学品和燃料分子的绿色、可持续合成,符合“碳中和”发展大方向。按照生物催化载体的不同,光催化-生物杂合系统可分为:光催化-生物酶杂合系统和光催化-微生物杂合系统两大类。光催化-生物酶杂合系统根据作用机制细分为:辅因子介导的间接反应体系、直接电子传递的反应体系以及混合型光催化-生物酶杂合系统;光催化-微生物杂合系统分为:直接电子传递的胞外供能模式、化学物质介导的胞外供能模式以及胞内的能量供给模式。对这些模式的具体作用机制,以及存在的优缺点和关键问题做出了综合评述,并对该领域提出了未来展望。

关键词: 生物催化, 生物能源, 二氧化碳捕集, 光催化, 杂合系统

CLC Number: