CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 425-433.DOI: 10.11949/0438-1157.20211166
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jie JIANG1(),Qiuyu TANG1,Ling ZHAO1,2,Zhenhao XI1(),Weikang YUAN1
Received:
2021-08-16
Revised:
2021-11-29
Online:
2022-01-18
Published:
2022-01-05
Contact:
Zhenhao XI
通讯作者:
奚桢浩
作者简介:
蒋杰(1991—),男,博士研究生,基金资助:
CLC Number:
Jie JIANG, Qiuyu TANG, Ling ZHAO, Zhenhao XI, Weikang YUAN. Molecular motion and hydrogen bond of long-chain PA1212 elastomer under thermal field[J]. CIESC Journal, 2022, 73(1): 425-433.
蒋杰, 唐秋雨, 赵玲, 奚桢浩, 袁渭康. 长碳链PA1212弹性体在热环境中的分子运动和氢键研究[J]. 化工学报, 2022, 73(1): 425-433.
Add to citation manager EndNote|Ris|BibTeX
波数(cm-1) | 峰的归属及所属软硬段相 | 文献 |
---|---|---|
3319 | ν(N—H, disordered bonded),酰胺A无序N—H伸缩振动,硬段 | [ |
3309 | ν(N—H, ordered bonded),酰胺A有序N—H伸缩振动,硬段 | [ |
2920 | νas(—CH2—),CH2反对称伸缩振动,硬段和软段 | [ |
2851 | ν(—CH2—),CH2对称伸缩振动,硬段和软段 | [ |
1678 | ν(C | [ |
1650 | ν(C | [ |
1633 | ν(C | [ |
1536 | δ(N—H, bonded),酰胺Ⅱ的有序氢键的N—H弯曲振动,硬段 | [ |
1507 | δ(N—H, free),酰胺Ⅱ的“自由”的N—H弯曲振动,硬段 | [ |
1350 | ω(—O—CH2—),C—H摇摆振动,软段 | [ |
1107 | νas(C—O—C),C—O—C反对称振动,软段 | [ |
950 | Amide Ⅳ, 硬段α phase | [ |
Table 1 Band assignments of FT-IR spectra for PA1212-co-PEG elastomer
波数(cm-1) | 峰的归属及所属软硬段相 | 文献 |
---|---|---|
3319 | ν(N—H, disordered bonded),酰胺A无序N—H伸缩振动,硬段 | [ |
3309 | ν(N—H, ordered bonded),酰胺A有序N—H伸缩振动,硬段 | [ |
2920 | νas(—CH2—),CH2反对称伸缩振动,硬段和软段 | [ |
2851 | ν(—CH2—),CH2对称伸缩振动,硬段和软段 | [ |
1678 | ν(C | [ |
1650 | ν(C | [ |
1633 | ν(C | [ |
1536 | δ(N—H, bonded),酰胺Ⅱ的有序氢键的N—H弯曲振动,硬段 | [ |
1507 | δ(N—H, free),酰胺Ⅱ的“自由”的N—H弯曲振动,硬段 | [ |
1350 | ω(—O—CH2—),C—H摇摆振动,软段 | [ |
1107 | νas(C—O—C),C—O—C反对称振动,软段 | [ |
950 | Amide Ⅳ, 硬段α phase | [ |
1 | Fakirov S. Handbook of Condensation Thermoplastic Elastomers[M].Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2005: 243-257. |
2 | Sheth J P, Xu J N, Wilkes G L. Solid state structure-property behavior of semicrystalline poly(ether-block-amide) PEBAX® thermoplastic elastomers[J]. Polymer, 2003, 44(3): 743-756. |
3 | 陈霏, 顾利霞, 陈彦模. 聚己内酰胺-聚乙二醇多嵌段共聚物的结构和性能(Ⅰ): 嵌段共聚物的大分子结构[J]. 合成纤维工业, 1992, 15(6): 18-23. |
Chen F, Gu L X, Chen Y M. The structure and property of PA6-PEG block copolymer (Ⅰ): The macromolecule structure of this block copolymer[J]. Synthetic Fiber Industry, 1992, 15(6): 18-23. | |
4 | 陈彦模, 陈霏, 顾利霞. PA6-PEG多嵌段共聚物的结构和性能 (Ⅱ): 嵌段共聚物的结晶度和晶粒尺寸[J]. 合成纤维工业, 1993, 16(5): 37-41. |
Chen Y M, Chen F, Gu L X. Structure and property of PA6-PEG block copolymer (Ⅱ).The crystallinities and apparent crystal sizes of block Copolymer[J]. Synthetic Fiber Industry, 1993, 16(5): 37-41. | |
5 | Huang J C, Lan J W, Lin S J, et al. Synthesis and nonisothermal crystallization kinetics of thermoplastic polyamide-6 elastomers[J]. Journal of Applied Polymer Science, 2019, 136(14): 47388. |
6 | Yuan R C, Fan S, Wu D Q, et al. Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization[J]. Polymer Chemistry, 2018, 9(11): 1327-1336. |
7 | Yi C W, Peng Z H, Wang H P, et al. Synthesis and characteristics of thermoplastic elastomer based on polyamide-6[J]. Polymer International, 2011, 60(12): 1728-1736. |
8 | Kong W B, Yang Y Y, Liu Z M, et al. Structure-property relations of novel polyamide-6 elastomers prepared through reactive processing[J]. Journal of Polymer Research, 2017, 24(10): 1-9. |
9 | 徐凌云, 易玉, 施文. 聚酰胺-聚醚多嵌段共聚物的合成、表征及性能[J]. 高分子材料科学与工程, 1990, 6(4): 43-47. |
Xu L Y, Yi Y, Shi W. Polyamide-polyether multiblock copolymers—synthesis, characterization and properties[J]. Polymeric Materials Science & Engineering, 1990, 6(4): 43-47. | |
10 | 徐凌云, 施文. 聚酰胺-聚醚多嵌段共聚物的组成对结晶行为的影响[J]. 高分子材料科学与工程, 1990, 6(6): 25-29. |
Xu L Y, Shi W. The effect of composition of polyamide-polyether multiblock copolymers on crystallization behavior[J]. Polymeric Materials Science & Engineering, 1990, 6(6): 25-29. | |
11 | Zhu P, Dong X, Wang D J. Strain-induced crystallization of segmented copolymers: deviation from the classic deformation mechanism[J]. Macromolecules, 2017, 50(10): 3911-3921. |
12 | Cao Y Y, Zhu P, Zhou Y, et al. Influence of soft block and film thickness on confined morphology of poly(ether-mb-amide) multiblock copolymers[J]. Polymer Crystallization, 2020, 3(1): e10100. |
13 | Zhu P, Dong X, Cao Y Y, et al. The Brill transition in polyether-b-amide segmented copolymers and composition dependence[J]. European Polymer Journal, 2017, 93: 334-346. |
14 | 付鹏, 刘民英, 赵清香, 等. PA1212-b-PTMG嵌段共聚物的合成反应动力学[J]. 高分子材料科学与工程, 2005, 21(4): 129-132. |
Fu P, Liu M Y, Zhao Q X, et al. Synthetic reaction kinetic study of PA1212-b-PTMG segmented block copolymer[J]. Polymeric Materials Science & Engineering, 2005, 21(4): 129-132. | |
15 | 霍丽, 赵清香, 王玉东, 等. PA1212-b-PEG嵌段共聚物的合成与表征[J]. 高分子材料科学与工程, 2009, 25(9): 12-15. |
Huo L, Zhao Q X, Wang Y D, et al. Synthesis and characterization of PA1212-b-PEG block copolymers based on carboxyl-terminated nylon 1212 and amine-terminated polyethylene glycol[J]. Polymer Materials Science & Engineering, 2009, 25(9): 12-15. | |
16 | 黄正强. 双端氨基聚乙二醇的制备及尼龙1212/聚乙二醇嵌段共聚物的合成[D]. 郑州: 郑州大学, 2007. |
Huang Z Q. Synthesis of amino-terminated PEG and nylon 1212/PEG segmented block copolymer[D]. Zhengzhou: Zhengzhou University, 2007. | |
17 | 黄瑞杰. PA1212和PA1212-b-PTMG熔体黏弹行为及PA1212分子量测定[D]. 郑州: 郑州大学, 2005. |
Huang R J. Melt viscoelastic behavior of PA1212 and PA1212-b-PTMG and determination of molecular weight of PA1212[D]. Zhengzhou: Zhengzhou University, 2005. | |
18 | 霍丽, 郭林. PA1212-b-PEG嵌段共聚物的合成和非等温结晶动力学研究[J]. 广州化工, 2012, 40(13): 77-78, 81. |
Huo L, Guo L. Research of PA1212-b-PEG block copolymer synthesis and non-uniform temperature crystallization dynamics[J]. Guangzhou Chemical Industry, 2012, 40(13): 77-78, 81. | |
19 | Barzegari M R, Hossieny N, Jahani D, et al. Characterization of hard-segment crystalline phase of poly(ether-block-amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams[J]. Polymer, 2017, 114: 15-27. |
20 | Car A, Stropnik C, Yave W, et al. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation[J]. Journal of Membrane Science, 2008, 307(1): 88-95. |
21 | Jia L, Su G, Yuan Q, et al. Difference in the micro-dynamics mechanism between aromatic nylon and aliphatic nylon during water absorption: spectroscopic evidence[J]. Physical Chemistry Chemical Physics, 2018, 20(41): 26764-26776. |
22 | Yeh I C, Rinderspacher B C, Andzelm J W, et al. Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides[J]. Polymer, 2014, 55(1): 166-174. |
23 | Li Y, Yan D, Zhou E. In situ Fourier transform IR spectroscopy and variable-temperature wide-angle X-ray diffraction studies on the crystalline transformation of melt-crystallized nylon 12 12[J]. Colloid and Polymer Science, 2002, 280(2): 124-129. |
24 | Wen L, Zhang J H, Zhou T, et al. Hydrogen bonding in micro-phase separation of poly(polyamide 12-block-polytetrahydrofuran) alternating block copolymer: enthalpies and molecular movements[J]. Vibrational Spectroscopy, 2016, 86: 160-172. |
25 | Yan D Y, Li Y J, Zhu X Y. Brill transition in Nylon 10 12 investigated by variable temperature XRD and real time FT-IR[J]. Macromolecular Rapid Communications, 2000, 21(15): 1040-1043. |
26 | Vasanthan N, Murthy N S, Bray R G. Investigation of Brill transition in nylon 6 and nylon 6, 6 by infrared spectroscopy[J]. Macromolecules, 1998, 31(23): 8433-8435. |
27 | An M F, Zhang Q L, Lin Y F, et al. Stretch-induced reverse Brill transition in polyamide 46[J]. Macromolecules, 2020, 53(24): 11153-11165. |
28 | Noda I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy[J]. Applied Spectroscopy, 1993, 47(9): 1329-1336. |
29 | Song J B, Chen Q Y, Ren M Q, et al. Multiple melting and crystallization behavior of nylon 12 12[J]. Chinese Journal of Polymer Science, 2006, 24(2): 187-193. |
30 | Yang X N, Tan S S, Li G, et al. Dependence of the brill transition on the crystal size of nylon 10 10[J]. Macromolecules, 2001, 34(17): 5936-5942. |
31 | Vinken E, Terry A E, Hoffmann S, et al. Influence of hydrogen bonding on the conformational changes, the Brill transition, and lamellae thickening in (co)polyamides[J]. Macromolecules, 2006, 39(7): 2546-2552. |
32 | Jasinska-Walc L, Villani M, Dudenko D, et al. Local conformation and cocrystallization phenomena in renewable diaminoisoidide-based polyamides studied by FT-IR, solid state NMR, and WAXD[J]. Macromolecules, 2012, 45(6): 2796-2808. |
33 | Feldman A Y, Wachtel E, Vaughan G B M, et al. The Brill transition in transcrystalline nylon-66[J]. Macromolecules, 2006, 39(13): 4455-4459. |
[1] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[2] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[9] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[10] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[11] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[12] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[13] | Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics [J]. CIESC Journal, 2022, 73(9): 4003-4014. |
[14] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[15] | Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||