CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 838-846.DOI: 10.11949/0438-1157.20211405
• Process system engineering • Previous Articles Next Articles
Xiongfei XU1(),Penglong LIU1,Wei ZHANG1(),Xin XU1,Kan ZHANG2,Junwen WANG1
Received:
2021-09-29
Revised:
2021-11-03
Online:
2022-02-18
Published:
2022-02-05
Contact:
Wei ZHANG
许雄飞1(),刘鹏龙1,张玮1(),许鑫1,张侃2,王俊文1
通讯作者:
张玮
作者简介:
许雄飞(1996—),男,硕士研究生,基金资助:
CLC Number:
Xiongfei XU, Penglong LIU, Wei ZHANG, Xin XU, Kan ZHANG, Junwen WANG. Multivariate nonlinear regression model of methanol to aromatics by two-state fixed bed for product prediction[J]. CIESC Journal, 2022, 73(2): 838-846.
许雄飞, 刘鹏龙, 张玮, 许鑫, 张侃, 王俊文. 两段法固定床甲醇制芳烃产物预测多元非线性回归模型[J]. 化工学报, 2022, 73(2): 838-846.
Add to citation manager EndNote|Ris|BibTeX
工艺条件 | 上限 | 下限 |
---|---|---|
p/MPa | 0 | 0.8 |
τ/h-1 | 0.1 | 0.5 |
T1/℃ | 390 | 510 |
T2/℃ | 450 | 510 |
Table 1 Change scope of process conditions of MTA in two-stage fixed bed
工艺条件 | 上限 | 下限 |
---|---|---|
p/MPa | 0 | 0.8 |
τ/h-1 | 0.1 | 0.5 |
T1/℃ | 390 | 510 |
T2/℃ | 450 | 510 |
序号 | p/MPa | τ/h-1 | T1/℃ | T2/℃ | TOS/min | M/g | w(甲醇)/% | w(C1)/% | w(烷烃)/% | w(烯烃)/% | w(芳烃)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.1 | 390.2 | 450 | 15118 | 2332.92 | 0.20 | 2.97 | 41.46 | 18.75 | 36.63 |
2 | 0 | 0.1 | 389 | 510 | 13751 | 1881.81 | 0.10 | 10.25 | 32.93 | 17.95 | 38.76 |
3 | 0 | 0.3 | 450.4 | 480 | 16075 | 3162.62 | 0.29 | 2.79 | 36.63 | 25.88 | 34.41 |
4 | 0 | 0.1 | 510 | 450 | 1443 | 476.19 | 0.01 | 48.30 | 16.59 | 3.58 | 31.53 |
5 | 0.22 | 0.4 | 426.1 | 460.5 | 5469 | 4354.77 | 0.13 | 4.00 | 34.16 | 8.23 | 53.48 |
6 | 0.23 | 0.4 | 422.5 | 490 | 5947 | 4990.51 | 0.24 | 5.13 | 37.21 | 12.25 | 45.16 |
7 | 0.24 | 0.2 | 423.4 | 462.6 | 7495 | 6180.13 | 0.08 | 4.67 | 36.75 | 8.91 | 49.59 |
? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
68 | 0.46 | 0.3 | 458.8 | 480 | 16445 | 14527.90 | 0.18 | 15.72 | 30.65 | 8.66 | 44.79 |
69 | 0.46 | 0.3 | 457.3 | 480 | 16643 | 14725.90 | 0.76 | 16.04 | 30.21 | 8.10 | 44.89 |
70 | 0.44 | 0.3 | 454.1 | 480 | 17608 | 13879.3 | 0.45 | 10.86 | 32.06 | 6.63 | 50.00 |
71 | 0 | 0.3 | 394.9 | 510 | 18112 | 14383.3 | 0.17 | 6.50 | 25.55 | 30.87 | 36.91 |
Table 2 MTA partial experimental data
序号 | p/MPa | τ/h-1 | T1/℃ | T2/℃ | TOS/min | M/g | w(甲醇)/% | w(C1)/% | w(烷烃)/% | w(烯烃)/% | w(芳烃)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.1 | 390.2 | 450 | 15118 | 2332.92 | 0.20 | 2.97 | 41.46 | 18.75 | 36.63 |
2 | 0 | 0.1 | 389 | 510 | 13751 | 1881.81 | 0.10 | 10.25 | 32.93 | 17.95 | 38.76 |
3 | 0 | 0.3 | 450.4 | 480 | 16075 | 3162.62 | 0.29 | 2.79 | 36.63 | 25.88 | 34.41 |
4 | 0 | 0.1 | 510 | 450 | 1443 | 476.19 | 0.01 | 48.30 | 16.59 | 3.58 | 31.53 |
5 | 0.22 | 0.4 | 426.1 | 460.5 | 5469 | 4354.77 | 0.13 | 4.00 | 34.16 | 8.23 | 53.48 |
6 | 0.23 | 0.4 | 422.5 | 490 | 5947 | 4990.51 | 0.24 | 5.13 | 37.21 | 12.25 | 45.16 |
7 | 0.24 | 0.2 | 423.4 | 462.6 | 7495 | 6180.13 | 0.08 | 4.67 | 36.75 | 8.91 | 49.59 |
? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
68 | 0.46 | 0.3 | 458.8 | 480 | 16445 | 14527.90 | 0.18 | 15.72 | 30.65 | 8.66 | 44.79 |
69 | 0.46 | 0.3 | 457.3 | 480 | 16643 | 14725.90 | 0.76 | 16.04 | 30.21 | 8.10 | 44.89 |
70 | 0.44 | 0.3 | 454.1 | 480 | 17608 | 13879.3 | 0.45 | 10.86 | 32.06 | 6.63 | 50.00 |
71 | 0 | 0.3 | 394.9 | 510 | 18112 | 14383.3 | 0.17 | 6.50 | 25.55 | 30.87 | 36.91 |
模型 | 实验组数 | 参数维度 | F | |
---|---|---|---|---|
C1 | 57 | 28 | 65.74 | 1.87 |
烷烃 | 57 | 28 | 181.03 | 1.87 |
烯烃 | 57 | 28 | 86.13 | 1.87 |
芳烃 | 57 | 28 | 192.41 | 1.87 |
Table 3 Model statistical tests
模型 | 实验组数 | 参数维度 | F | |
---|---|---|---|---|
C1 | 57 | 28 | 65.74 | 1.87 |
烷烃 | 57 | 28 | 181.03 | 1.87 |
烯烃 | 57 | 28 | 86.13 | 1.87 |
芳烃 | 57 | 28 | 192.41 | 1.87 |
MVR model | Train set | Test set | ||
---|---|---|---|---|
MSE | MSE | |||
C1 | 0.98 | 0.001 | 0.9 | 0.003 |
烷烃 | 0.99 | 0.0006 | 0.94 | 0.005 |
烯烃 | 0.99 | 0.0001 | 0.96 | 0.002 |
芳烃 | 0.99 | 0.001 | 0.97 | 0.005 |
总体 | 0.992 | 0.0007 | 0.9576 | 0.0037 |
Table 4 Comparison of training and test sets
MVR model | Train set | Test set | ||
---|---|---|---|---|
MSE | MSE | |||
C1 | 0.98 | 0.001 | 0.9 | 0.003 |
烷烃 | 0.99 | 0.0006 | 0.94 | 0.005 |
烯烃 | 0.99 | 0.0001 | 0.96 | 0.002 |
芳烃 | 0.99 | 0.001 | 0.97 | 0.005 |
总体 | 0.992 | 0.0007 | 0.9576 | 0.0037 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 0.72 | 27 | 0.027 | 12.15 | < 0.0001 |
A | 2.72×10-5 | 1 | 2.72×10-5 | 0.012 | 0.9121 |
B | 0.068 | 1 | 0.068 | 30.96 | < 0.0001 |
C | 0.021 | 1 | 0.021 | 9.48 | 0.0045 |
D | 3.75×10-4 | 1 | 3.75×10-4 | 0.17 | 0.6821 |
E | 8.65×10-3 | 1 | 8.65×10-3 | 3.95 | 0.0565 |
F | 8.44×10-3 | 1 | 8.44×10-3 | 3.85 | 0.0593 |
AB | 0.16 | 1 | 0.16 | 73.2 | < 0.0001 |
AC | 0.019 | 1 | 0.019 | 8.65 | 0.0064 |
AD | 1.83×10-4 | 1 | 1.83×10-4 | 0.084 | 0.7745 |
AE | 0.022 | 1 | 0.022 | 10.21 | 0.0034 |
AF | 0.014 | 1 | 0.014 | 6.59 | 0.0157 |
BC | 1.88×10-7 | 1 | 1.88×10-7 | 8.58×10-5 | 0.9927 |
BD | 2.71×10-3 | 1 | 2.71×10-3 | 1.24 | 0.2748 |
BE | 2.44×10-3 | 1 | 2.44×10-3 | 1.11 | 0.2999 |
BF | 3.02×10-3 | 1 | 3.02×10-3 | 1.38 | 0.2497 |
CD | 4.87×10-5 | 1 | 4.87×10-5 | 0.022 | 0.8825 |
CE | 6.59×10-4 | 1 | 6.59×10-4 | 0.3 | 0.5876 |
CF | 5.18×10-3 | 1 | 5.18×10-3 | 2.37 | 0.1349 |
DE | 3.05×10-4 | 1 | 3.05×10-4 | 0.14 | 0.7119 |
DF | 2.65×10-4 | 1 | 2.65×10-4 | 0.12 | 0.7305 |
EF | 2.37×10-3 | 1 | 2.37×10-3 | 1.08 | 0.3068 |
A2 | 0.013 | 1 | 0.013 | 6.16 | 0.0191 |
B2 | 3.92×10-5 | 1 | 3.92×10-5 | 0.018 | 0.8945 |
C2 | 2.59×10-3 | 1 | 2.59×10-3 | 1.18 | 0.2863 |
D2 | 0.011 | 1 | 0.011 | 5.12 | 0.0313 |
E2 | 8.00×10-3 | 1 | 8.00×10-3 | 3.65 | 0.0659 |
F2 | 1.91×10-4 | 1 | 1.91×10-4 | 0.087 | 0.7699 |
残差 | 0.064 | 29 | 2.19×10-3 | ||
总偏差 | 0.78 | 56 |
Table 5 Analysis of variance for aromatic model
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 0.72 | 27 | 0.027 | 12.15 | < 0.0001 |
A | 2.72×10-5 | 1 | 2.72×10-5 | 0.012 | 0.9121 |
B | 0.068 | 1 | 0.068 | 30.96 | < 0.0001 |
C | 0.021 | 1 | 0.021 | 9.48 | 0.0045 |
D | 3.75×10-4 | 1 | 3.75×10-4 | 0.17 | 0.6821 |
E | 8.65×10-3 | 1 | 8.65×10-3 | 3.95 | 0.0565 |
F | 8.44×10-3 | 1 | 8.44×10-3 | 3.85 | 0.0593 |
AB | 0.16 | 1 | 0.16 | 73.2 | < 0.0001 |
AC | 0.019 | 1 | 0.019 | 8.65 | 0.0064 |
AD | 1.83×10-4 | 1 | 1.83×10-4 | 0.084 | 0.7745 |
AE | 0.022 | 1 | 0.022 | 10.21 | 0.0034 |
AF | 0.014 | 1 | 0.014 | 6.59 | 0.0157 |
BC | 1.88×10-7 | 1 | 1.88×10-7 | 8.58×10-5 | 0.9927 |
BD | 2.71×10-3 | 1 | 2.71×10-3 | 1.24 | 0.2748 |
BE | 2.44×10-3 | 1 | 2.44×10-3 | 1.11 | 0.2999 |
BF | 3.02×10-3 | 1 | 3.02×10-3 | 1.38 | 0.2497 |
CD | 4.87×10-5 | 1 | 4.87×10-5 | 0.022 | 0.8825 |
CE | 6.59×10-4 | 1 | 6.59×10-4 | 0.3 | 0.5876 |
CF | 5.18×10-3 | 1 | 5.18×10-3 | 2.37 | 0.1349 |
DE | 3.05×10-4 | 1 | 3.05×10-4 | 0.14 | 0.7119 |
DF | 2.65×10-4 | 1 | 2.65×10-4 | 0.12 | 0.7305 |
EF | 2.37×10-3 | 1 | 2.37×10-3 | 1.08 | 0.3068 |
A2 | 0.013 | 1 | 0.013 | 6.16 | 0.0191 |
B2 | 3.92×10-5 | 1 | 3.92×10-5 | 0.018 | 0.8945 |
C2 | 2.59×10-3 | 1 | 2.59×10-3 | 1.18 | 0.2863 |
D2 | 0.011 | 1 | 0.011 | 5.12 | 0.0313 |
E2 | 8.00×10-3 | 1 | 8.00×10-3 | 3.65 | 0.0659 |
F2 | 1.91×10-4 | 1 | 1.91×10-4 | 0.087 | 0.7699 |
残差 | 0.064 | 29 | 2.19×10-3 | ||
总偏差 | 0.78 | 56 |
1 | 代成义, 陈中顺, 杜康, 等. 甲醇制芳烃催化剂及相关工艺研究进展[J]. 化工进展, 2020, 39(12): 5029-5041. |
Dai C Y, Chen Z S, Du K, et al. Research progress of catalysts and related technologies for methanol to aromatics[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5029-5041. | |
2 | Niziolek A M, Onel O, Guzman Y A, et al. Biomass-based production of benzene, toluene, and xylenes via methanol: process synthesis and deterministic global optimization[J]. Energy & Fuels, 2016, 30(6): 4970-4998. |
3 | Meyers R A. Handbook of Petroleum Refining Processes[M]. New York: McGrawHill, 2004. |
4 | Kent J A. Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology[M]. Boston, MA: Springer US, 2007. |
5 | Wittcoff H A, Reuben B G, Plotkin J S. Industrial Organic Chemicals[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. |
6 | Wei Z H, Xia T F, Liu M H, et al. Alkaline modification of ZSM-5 catalysts for methanol aromatization: the effect of the alkaline concentration[J]. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450-460. |
7 | Xu S M, Zhang X X, Cheng D G, et al. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780-789. |
8 | Gayubo A G, Valle B, Aguayo A T, et al. Attenuation of catalyst deactivation by cofeeding methanol for enhancing the valorisation of crude bio-oil[J]. Energy & Fuels, 2009, 23(8): 4129-4136. |
9 | 张宝珠. 甲醇转化制芳烃(MTA)反应的研究[D]. 大连: 大连理工大学, 2013. |
Zhang B Z. Study on methanol to aromatics (MTA) reaction[D]. Dalian: Dalian University of Technology, 2013. | |
10 | 冯丽梅, 徐亚荣, 张力, 等. 甲醇芳构化反应的热力学研究[J]. 石化技术与应用, 2017, 35(2): 101-105. |
Feng L M, Xu Y R, Zhang L, et al. Study on thermodynamics of methanol to aromatic reaction[J]. Petrochemical Technology & Application, 2017, 35(2): 101-105. | |
11 | 张贵泉, 白婷, 屈文婷, 等. 甲醇芳构化的研究 (Ⅰ): 反应热力学分析[J]. 石油化工, 2013, 42(2): 141-145. |
Zhang G Q, Bai T, Qu W T, et al. Aromatization of methanol (Ⅰ): Reaction thermodynamics[J]. Petrochemical Technology, 2013, 42(2): 141-145. | |
12 | 施丽丽, 方栩, 刘殿华, 等. Zn改性ZSM-5催化甲醇制芳烃反应动力学[J]. 天然气化工(C1化学与化工), 2017, 42(2): 40-44, 49. |
Shi L L, Fang X, Liu D H, et al. Kinetic model for reaction of methanol to aromatics on Zn modified ZSM-5 catalyst[J]. Natural Gas Chemical Industry, 2017, 42(2): 40-44, 49. | |
13 | 徐亚荣, 蒋斌波, 冯丽梅, 等. 甲醇制芳烃(MTA)反应动力学的研究[J]. 聚酯工业, 2019, 32(6): 7-12. |
Xu Y R, Jiang B B, Feng L M, et al. Study on reaction dynamic of methanol to aromatic[J]. Polyester Industry, 2019, 32(6): 7-12. | |
14 | Li N, Meng C, Liu D H. Deactivation kinetics with activity coefficient of the methanol to aromatics process over modified ZSM-5[J]. Fuel, 2018, 233: 283-290. |
15 | Li H, Li X G, Xiao W D. Deactivation kinetics of individual C6-C9 aromatics' generation from methanol over Zn and P co-modified HZSM-5[J]. RSC Advances, 2019, 9(39): 22327-22335. |
16 | Forester T R, Howe R F. In situ FTIR studies of methanol and dimethyl ether in ZSM-5[J]. Journal of the American Chemical Society, 1987, 109(17): 5076-5082. |
17 | Wang W, Seiler M, Hunger M. Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy[J]. The Journal of Physical Chemistry B, 2001, 105(50): 12553-12558. |
18 | Wang W, Buchholz A, Seiler M, et al. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts[J]. Journal of the American Chemical Society, 2003, 125(49): 15260-15267. |
19 | Lesthaeghe D, Van Speybroeck V, Marin G B, et al. Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process[J]. Angewandte Chemie (International Ed. in English), 2006, 45(11): 1714-1719. |
20 | Olah G A, Klopman G, Schlosberg R H. Super acids(III):Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5[J]. Journal of the American Chemical Society, 1969, 91(12): 3261-3268. |
21 | Smith R D, Futrell J H. Evidence for complex formation in the reactions of CH3+ and CD3+ with CH3OH, CD3OD, and C2H5OH[J]. Chemical Physics Letters, 1976, 41(1): 64-67. |
22 | Olah G A, Doggweiler H, Felberg J D, et al. Onium Ylide chemistry(1): Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1.fwdarw. C2 conversion[J]. Journal of the American Chemical Society, 1984, 106(7): 2143-2149. |
23 | Song W G, Haw J F, Nicholas J B, et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. Journal of the American Chemical Society, 2000, 122(43): 10726-10727. |
24 | Gayubo A G, Arandes J M, Aguayo A T, et al. Contributions to the calculation of coke deactivation kinetics. A comparison of methods[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 55(3): 125-134. |
25 | Benito P L, Gayubo A G, Aguayo A T, et al. Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 3991-3998. |
26 | Benito P L, Gayubo A G, Aguayo A T, et al. Concentration-dependent kinetic model for catalyst deactivation in the MTG process[J]. Industrial & Engineering Chemistry Research, 1996, 35(1): 81-89. |
27 | Aguayo A T, Gayubo A G, Ortega J, et al. Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors[J]. Catalysis Today, 1997, 37(3): 239-248. |
28 | Gayubo A G, Aguayo A T, Benito P L, et al. Reactivation of the HZSM-5 zeolite-based catalyst used in the MTG process[J]. AIChE Journal, 1997, 43(6): 1551-1558. |
29 | 薛永飞, 王雅琳, 孙备, 等. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616. |
Xue Y F, Wang Y L, Sun B, et al. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors[J]. CIESC Journal, 2019, 70(2): 607-616. | |
30 | 姚源朝, 仇鹏, 许建良, 等. 基于混合模型的气流床气化炉建模[J]. 化工学报, 2021, 72(5): 2727-2734. |
Yao Y C, Qiu P, Xu J L, et al. Modeling of entrained-bed gasifier based on hybrid model[J]. CIESC Journal, 2021, 72(5): 2727-2734. | |
31 | 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015. |
Ge Y Y. Experiment Design Method and Application of Design-Expert Software[M]. Harbin: Harbin Institute of Technology Press, 2015. | |
32 | 陈昊, 杨二龙, 纪大伟, 等. 基于多元回归的套管钢含CO2/H2S腐蚀速率预测[J]. 石油化工高等学校学报, 2021, 34(1): 58-62. |
Chen H, Yang E L, Ji D W, et al. Prediction of corrosion rate of casing steel containing CO2/H2S based on multiple linear regression[J]. Journal of Petrochemical Universities, 2021, 34(1): 58-62. | |
33 | 朱炳辰. 催化反应工程[M]. 北京: 中国石化出版社, 2001. |
Zhu B C. Catalytic Reaction Engineering[M]. Beijing: China Petrochemical Press, 2001. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[7] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[8] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[9] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[12] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[13] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[14] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[15] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||