CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 770-781.DOI: 10.11949/0438-1157.20211315
• Process system engineering • Previous Articles Next Articles
Xinshan KONG1(),Renxing HUANG1,Lixia KANG1,2,3,Yongzhong LIU1,2,3()
Received:
2021-09-08
Revised:
2021-11-17
Online:
2022-02-18
Published:
2022-02-05
Contact:
Yongzhong LIU
孔昕山1(),黄仁星1,康丽霞1,2,3,刘永忠1,2,3()
通讯作者:
刘永忠
作者简介:
孔昕山(1998—),男,硕士研究生,基金资助:
CLC Number:
Xinshan KONG, Renxing HUANG, Lixia KANG, Yongzhong LIU. Optimal design of time-sharing heat storage system for modular production of methanol[J]. CIESC Journal, 2022, 73(2): 770-781.
孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
Add to citation manager EndNote|Ris|BibTeX
Capital cost (Ccap)/USD | Maintenance cost (Cmai)/USD | Min LF (LFmin) | Max LF (LFmax) | Lifetime (n)/y | Operating cost (USD/MWh) | |
---|---|---|---|---|---|---|
STij | 0 | 0.85[ | 20[ | — | ||
HE11 | 0 | 1 | 10[ | 23.06 | ||
HE12 | 0 | 1 | 10[ | 23.06 | ||
HE13 | 0 | 1 | 10[ | 23.06 | ||
HE14 | 0 | 1 | 10[ | 23.06 |
Table 1 Cost calculation data for storage tanks and air coolers
Capital cost (Ccap)/USD | Maintenance cost (Cmai)/USD | Min LF (LFmin) | Max LF (LFmax) | Lifetime (n)/y | Operating cost (USD/MWh) | |
---|---|---|---|---|---|---|
STij | 0 | 0.85[ | 20[ | — | ||
HE11 | 0 | 1 | 10[ | 23.06 | ||
HE12 | 0 | 1 | 10[ | 23.06 | ||
HE13 | 0 | 1 | 10[ | 23.06 | ||
HE14 | 0 | 1 | 10[ | 23.06 |
Scenario | ST11/t | ST12/t | ST13/t | ST14/t |
---|---|---|---|---|
S1 | 1.12×104 | 1.08×103 | 7.71×103 | 8.68×103 |
S2 | 1.12×104 | 1.33×102 | 7.38×101 | 8.20×101 |
Table 2 The capacity configuration of storage tanks in Scenario 1 and Scenario 2
Scenario | ST11/t | ST12/t | ST13/t | ST14/t |
---|---|---|---|---|
S1 | 1.12×104 | 1.08×103 | 7.71×103 | 8.68×103 |
S2 | 1.12×104 | 1.33×102 | 7.38×101 | 8.20×101 |
Scenario | HE11/MW | HE12/MW | HE13/MW | HE14/MW |
---|---|---|---|---|
S1 | 0 | 0 | 0 | 4.25 |
S2 | 1.24 | 0.53 | 2.15 | 4.25 |
Table 3 Heat exchanger heat duty configuration in Scenario 1 and Scenario 2
Scenario | HE11/MW | HE12/MW | HE13/MW | HE14/MW |
---|---|---|---|---|
S1 | 0 | 0 | 0 | 4.25 |
S2 | 1.24 | 0.53 | 2.15 | 4.25 |
Scenario | Total cost/USD | ST cost/USD | HE cost/USD | Operating cost/USD |
---|---|---|---|---|
S1 | 1.15×105 | 1.09×105 | 7.81×102 | 5.37×103 |
S2 | 6.86×104 | 4.79×104 | 1.65×103 | 1.91×104 |
Table 4 Equipment costs and operating costs in Scenario 1 and Scenario 2
Scenario | Total cost/USD | ST cost/USD | HE cost/USD | Operating cost/USD |
---|---|---|---|---|
S1 | 1.15×105 | 1.09×105 | 7.81×102 | 5.37×103 |
S2 | 6.86×104 | 4.79×104 | 1.65×103 | 1.91×104 |
1 | Liu Z M, Lim M Q, Kraft M, et al. Simultaneous design and operation optimization of renewable combined cooling heating and power systems[J]. AIChE Journal, 2020, 66(12): e17039. |
2 | Allman A, Palys M J, Daoutidis P. Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study[J]. AIChE Journal, 2019, 65(7): e16434. |
3 | Varone A, Ferrari M. Power to liquid and power to gas: an option for the German Energiewende[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 207-218. |
4 | Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
5 | Rivarolo M, Bellotti D, Magistri L, et al. Feasibility study of methanol production from different renewable sources and thermo-economic analysis[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2105-2116. |
6 | Yang M B, You F Q. Modular methanol manufacturing from shale gas: techno-economic and environmental analyses of conventional large-scale production versus small-scale distributed, modular processing[J]. AIChE Journal, 2018, 64(2): 495-510. |
7 | Seifert T, Sievers S, Bramsiepe C, et al. Small scale, modular and continuous: a new approach in plant design[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52: 140-150. |
8 | Baldea M, Edgar T F, Stanley B L, et al. Modular manufacturing processes: status, challenges, and opportunities[J]. AIChE Journal, 2017, 63(10): 4262-4272. |
9 | Lier S, Paul S, Ferdinand D, et al. Modular process engineering: development of apparatuses for transformable production systems[J]. ChemBioEng Reviews, 2017, 4(1): 60-70. |
10 | Arora A, Li J P, Zantye M S, et al. Design standardization of unit operations for reducing the capital intensity and cost of small-scale chemical processes[J]. AIChE Journal, 2020, 66(2): e16802. |
11 | Chen Q, Grossmann I E. Effective generalized disjunctive programming models for modular process synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5873-5886. |
12 | Lier S, Grünewald M. Net present value analysis of modular chemical production plants[J]. Chemical Engineering & Technology, 2011, 34(5): 809-816. |
13 | Palys M J, Allman A, Daoutidis P. Exploring the benefits of modular renewable-powered ammonia production: a supply chain optimization study[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5898-5908. |
14 | Dannemand M, Perers B, Furbo S. Performance of a demonstration solar PVT assisted heat pump system with cold buffer storage and domestic hot water storage tanks[J]. Energy and Buildings, 2019, 188/189: 46-57. |
15 | 施素丽, 鹿院卫, 于强, 等. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864. |
Shi S L, Lu Y W, Yu Q, et al. Optimization of heat removal modes for heat exchanger in molten salt single storage tank[J]. CIESC Journal, 2019, 70(3): 857-864. | |
16 | Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191. |
17 | Farzan H, Zaim E H. Feasibility study on using asphalt pavements as heat absorbers and sensible heat storage materials in solar air heaters: an experimental study[J]. Journal of Energy Storage, 2021, 44: 103383. |
18 | Kumar A, Saha S K. Performance analysis of a packed bed latent heat thermal energy storage with cylindrical-shaped encapsulation[J]. International Journal of Energy Research, 2021, 45(9): 13130-13148. |
19 | Liu J, Baeyens J, Deng Y M, et al. High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage[J]. Journal of Environmental Management, 2020, 267: 110582. |
20 | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
21 | Ji H C, Wang H X, Yang J Y, et al. Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks[J]. Energy, 2021, 234: 121237. |
22 | Wan Z J, Wei J J, Qaisrani M A, et al. Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J]. Applied Thermal Engineering, 2020, 167: 114775. |
23 | Lou W R, Fan Y L, Luo L G. Single-tank thermal energy storage systems for concentrated solar power: flow distribution optimization for thermocline evolution management[J]. Journal of Energy Storage, 2020, 32: 101749. |
24 | Mao Q J, Chen H Z, Yang Y Z. Energy storage performance of a PCM in the solar storage tank[J]. Journal of Thermal Science, 2019, 28(2): 195-203. |
25 | Singh A, Khaewhom S, Kaistha N. Design and control of a small-scale isolated concentrated solar power generation unit[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 623-638. |
26 | Zhang H F, Wang L G, van Herle J, et al. Techno-economic optimization of CO2-to-methanol with solid-oxide electrolyzer[J]. Energies, 2019, 12(19): 3742. |
27 | Beccali M, Brunone S, Finocchiaro P, et al. Method for size optimisation of large wind-hydrogen systems with high penetration on power grids[J]. Applied Energy, 2013, 102: 534-544. |
28 | 徐英, 杨一凡, 朱萍, 等. 球罐和大型储罐[M]. 北京: 化学工业出版社, 2001: 127-128. |
Xu Y, Yang Y F, Zhu P, et al. Spherical Tanks and Large Storage Tanks[M]. Beijing: Chemical Industry Press, 2001: 127-128. | |
29 | Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm[J]. Desalination, 2018, 435: 221-234. |
30 | 马义伟. 空冷器设计与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 71-95. |
Ma Y W. Design and Application of Air Cooler[M]. Harbin: Harbin Institute of Technology Press, 1998: 71-95. | |
31 | Kumar J A. Thermal performance analysis of pump less earthern pipe evaporative air cooler[J]. International Journal of Engineering Research and Applications, 2012, 2(2): 032-040. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[11] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[12] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[13] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[14] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[15] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||