CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 759-769.DOI: 10.11949/0438-1157.20211022
• Process system engineering • Previous Articles Next Articles
Tianyuan WANG(),Chunbo CHEN,Lin SUN,Xionglin LUO()
Received:
2021-07-21
Revised:
2021-09-09
Online:
2022-02-18
Published:
2022-02-05
Contact:
Xionglin LUO
通讯作者:
罗雄麟
作者简介:
王天媛(1996—),女,硕士研究生,基金资助:
CLC Number:
Tianyuan WANG, Chunbo CHEN, Lin SUN, Xionglin LUO. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling[J]. CIESC Journal, 2022, 73(2): 759-769.
王天媛, 陈春波, 孙琳, 罗雄麟. 基于全周期缓慢结垢的多效蒸发海水淡化慢时变系统优化设计[J]. 化工学报, 2022, 73(2): 759-769.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
物性参数 | |
外来加热蒸汽压力/MPa | 0.5 |
外来加热蒸汽温度/℃ | 151.8 |
进料海水温度/℃ | 35 |
进料海水盐分质量含量/% | 3.0 |
浓盐水顶温/℃ | <70 |
换热管参数 | |
长度/m | 6 |
外径/m | 0.024 |
厚度/m | 0.0007 |
Table 1 Basic physical parameters and equipment size of MED-TVC system
参数 | 数值 |
---|---|
物性参数 | |
外来加热蒸汽压力/MPa | 0.5 |
外来加热蒸汽温度/℃ | 151.8 |
进料海水温度/℃ | 35 |
进料海水盐分质量含量/% | 3.0 |
浓盐水顶温/℃ | <70 |
换热管参数 | |
长度/m | 6 |
外径/m | 0.024 |
厚度/m | 0.0007 |
效序数 | 单效进料海水流量/(kg/s) | 蒸发器内部压力/kPa | 蒸发温度/℃ | 预热器预热温差/℃ | 引射蒸汽流量/(kg/s) |
---|---|---|---|---|---|
1 | 31.59 | 27.342 | 67 | 4 | 4.4 |
2 | 31.59 | 23.917 | 64 | 4 | |
3 | 31.59 | 20.864 | 61 | 4 | |
4 | 31.59 | 18.148 | 58 | 4 | |
5 | 31.59 | 15.738 | 55 | 4 | |
6 | 31.59 | 13.607 | 52 | 4 | |
7 | 31.59 | 11.727 | 49 | 4 | |
8 | 31.59 | 10.074 | 46 | — |
Table 2 MED-TVC system operating conditions
效序数 | 单效进料海水流量/(kg/s) | 蒸发器内部压力/kPa | 蒸发温度/℃ | 预热器预热温差/℃ | 引射蒸汽流量/(kg/s) |
---|---|---|---|---|---|
1 | 31.59 | 27.342 | 67 | 4 | 4.4 |
2 | 31.59 | 23.917 | 64 | 4 | |
3 | 31.59 | 20.864 | 61 | 4 | |
4 | 31.59 | 18.148 | 58 | 4 | |
5 | 31.59 | 15.738 | 55 | 4 | |
6 | 31.59 | 13.607 | 52 | 4 | |
7 | 31.59 | 11.727 | 49 | 4 | |
8 | 31.59 | 10.074 | 46 | — |
效序数 | 蒸发温度/℃ | 海水进料流量/(kg/s) | 预热器预热温差/℃ | 引射蒸汽流量/(kg/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
等温 差法 | 等面 积法 | 稳态优化 | 等温差法 | 等面积法 | 稳态优化 | 等温 差法 | 等面 积法 | 稳态 优化 | 等温 差法 | 等面 积法 | 稳态 优化 | |
1 | 67 | 67 | 68.57 | 31.59 | 31.59 | 48.53 | 3 | 4 | 3 | 4.4 | 4.4 | 4.1 |
2 | 64 | 64 | 63.47 | 48.80 | 3 | |||||||
3 | 61 | 61 | 60.28 | 45.34 | 3 | |||||||
4 | 58 | 58 | 57.25 | 41.36 | 4 | |||||||
5 | 55 | 55 | 54.35 | 34.01 | 5 | |||||||
6 | 52 | 52 | 51.23 | 27.62 | 7 | |||||||
7 | 49 | 49 | 48.45 | 25.32 | 7 | |||||||
8 | 46 | 46 | 45.76 | 22.10 | - |
Table 3 Operating condition results
效序数 | 蒸发温度/℃ | 海水进料流量/(kg/s) | 预热器预热温差/℃ | 引射蒸汽流量/(kg/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
等温 差法 | 等面 积法 | 稳态优化 | 等温差法 | 等面积法 | 稳态优化 | 等温 差法 | 等面 积法 | 稳态 优化 | 等温 差法 | 等面 积法 | 稳态 优化 | |
1 | 67 | 67 | 68.57 | 31.59 | 31.59 | 48.53 | 3 | 4 | 3 | 4.4 | 4.4 | 4.1 |
2 | 64 | 64 | 63.47 | 48.80 | 3 | |||||||
3 | 61 | 61 | 60.28 | 45.34 | 3 | |||||||
4 | 58 | 58 | 57.25 | 41.36 | 4 | |||||||
5 | 55 | 55 | 54.35 | 34.01 | 5 | |||||||
6 | 52 | 52 | 51.23 | 27.62 | 7 | |||||||
7 | 49 | 49 | 48.45 | 25.32 | 7 | |||||||
8 | 46 | 46 | 45.76 | 22.10 | - |
效序数 | 操作裕量/% | 结垢裕量/% | 控制裕量/% | 总设计裕量/% | 总传热面积/m2 | ||||
---|---|---|---|---|---|---|---|---|---|
稳态 优化 | 稳态 优化 | 稳态 优化 | 等面 积法 | 等温 差法 | 稳态 优化 | 等面 积法 | 等温 差法 | 稳态 优化 | |
1 | 0.1 | 13.7 | 2.0 | 20.0 | 20.0 | 15.8 | 29202.66 | 22848.80 | 21197.64 |
2 | 1.6 | 13.3 | 16.9 | ||||||
3 | 0.9 | 14.6 | 17.5 | ||||||
4 | 2.2 | 16.3 | 20.5 | ||||||
5 | 8.0 | 19.7 | 29.7 | ||||||
6 | 13.4 | 23.1 | 38.5 | ||||||
7 | 20.7 | 21.3 | 44.0 | ||||||
8 | 34.4 | 19.8 | 56.2 |
Table 4 Design results of each effect margin and heat transfer area
效序数 | 操作裕量/% | 结垢裕量/% | 控制裕量/% | 总设计裕量/% | 总传热面积/m2 | ||||
---|---|---|---|---|---|---|---|---|---|
稳态 优化 | 稳态 优化 | 稳态 优化 | 等面 积法 | 等温 差法 | 稳态 优化 | 等面 积法 | 等温 差法 | 稳态 优化 | |
1 | 0.1 | 13.7 | 2.0 | 20.0 | 20.0 | 15.8 | 29202.66 | 22848.80 | 21197.64 |
2 | 1.6 | 13.3 | 16.9 | ||||||
3 | 0.9 | 14.6 | 17.5 | ||||||
4 | 2.2 | 16.3 | 20.5 | ||||||
5 | 8.0 | 19.7 | 29.7 | ||||||
6 | 13.4 | 23.1 | 38.5 | ||||||
7 | 20.7 | 21.3 | 44.0 | ||||||
8 | 34.4 | 19.8 | 56.2 |
效序数 | 总设计裕量/% | 总传热面积/m2 |
---|---|---|
1 | 6.87 | 18387.08 |
2 | 29.63 | |
3 | 22.31 | |
4 | 13.87 | |
5 | 11.26 | |
6 | 11.38 | |
7 | 12.58 | |
8 | 33.29 |
Table 5 The values of full-cycle optimization design margin
效序数 | 总设计裕量/% | 总传热面积/m2 |
---|---|---|
1 | 6.87 | 18387.08 |
2 | 29.63 | |
3 | 22.31 | |
4 | 13.87 | |
5 | 11.26 | |
6 | 11.38 | |
7 | 12.58 | |
8 | 33.29 |
1 | 高从堦, 陈国华. 海水淡化技术与工程手册[M]. 北京:化学工业出版社, 2004. |
Gao C J, Chen G H. Handbook of Seawater Desalination Technology and Engineering[M]. Beijing: Chemical Industry Press, 2004. | |
2 | 张建丽, 张忠梅. TVC-MED海水淡化装置工艺系统设计分析[J]. 神华科技, 2010, 8(1): 37-40, 73. |
Zhang J L, Zhang Z M. Technological system design and analysis of TVC-MED sea water desalinating unit[J]. Shenhua Science and Technology, 2010, 8(1): 37-40, 73. | |
3 | 徐贤英. 海水淡化技术的现状及其应用[J]. 工程建设, 2006, 38(4): 55-59. |
Xu X Y. Present situation and application of seawater desalination[J]. Engineering Construction, 2006, 38(4): 55-59. | |
4 | Darwish M A, El-Dessouky H. The heat recovery thermal vapour-compression desalting system: a comparison with other thermal desalination processes[J]. Applied Thermal Engineering, 1996, 16(6): 523-537. |
5 | 阮奇, 黄诗煌, 叶长燊, 等. 复杂逆流多效蒸发系统常规设计的模型与算法[J]. 化工学报, 2001, 52(7): 616-621. |
Ruan Q, Huang S H, Ye C S, et al. Conventional design model of complex countercurrentmulti-effect evaporation and its algorithm[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(7): 616-621. | |
6 | 苏保卫, 王越, 王志, 等. 塔式多效蒸馏海水淡化装置的进料优化[J]. 水处理技术, 2004, 30(4): 191-195. |
Su B W, Wang Y, Wang Z, et al. Feed optimization of multi effect stack desalination system[J]. Technology of Water Treatment, 2004, 30(4): 191-195. | |
7 | 刘晓华, 沈胜强, Genthner K, 等. 多效蒸发海水淡化系统模拟计算与优化[J]. 石油化工高等学校学报, 2005, 18(4): 16-19, 3. |
Liu X H, Shen S Q, Genthner K, et al. Simulation and optimization of MEE seawater desalination system[J]. Journal of Petrochemical Universities, 2005, 18(4): 16-19, 3. | |
8 | 龚路远, 杨勇, 沈胜强. 横管降膜低温多效蒸发海水淡化系统的优化设计[J]. 节能, 2011, 30(5): 4-8, 2. |
Gong L Y, Yang Y, Shen S Q. Optimization design of the low-temperature multi-effect distillation desalination system with horizontal pipe falling film evaporation[J]. Energy Conservation, 2011, 30(5): 4-8, 2. | |
9 | 唐智新, 吴礼云, 梁红英, 等. 低温多效蒸馏海水淡化蒸发器结垢原因分析及清洗[J]. 冶金动力, 2015, 34(9): 61-65. |
Tang Z X, Wu L Y, Liang H Y, et al. Cause analysis and cleaning of scaling in the LT-MED seawater desalination evaporator[J]. Metallurgical Power, 2015, 34(9): 61-65. | |
10 | Albagawi J. Fouling analysis and its mitigation in heat exchangers[D]. Saudi Arabia: King Fahd University of Petroleum and Minerals, 2002. |
11 | 程达芳. 多效蒸发过程模拟: 以最优法求解多效蒸发各个参数[J]. 高校化学工程学报, 1989, 3(2): 84-93. |
Cheng D F. Simulation of multiple - effect evaporation processes-parameters evaluation of multiple - effect evaporation with optimization method[J]. Journal of Chemical Engineering of Chinese Universities, 1989, 3(2): 84-93. | |
12 | 刘晓华, 沈胜强, 罗建松, 等. 水电联产低温多效蒸发海水淡化系统优化研究[J]. 大连理工大学学报, 2012, 52(4): 492-496. |
Liu X H, Shen S Q, Luo J S, et al. Research on optimization of power and water cogeneration system with LT-MED for seawater desalination[J]. Journal of Dalian University of Technology, 2012, 52(4): 492-496. | |
13 | 谢府命, 许锋, 梁志珊, 等. 乙炔加氢反应器全周期操作优化[J]. 化工学报, 2018, 69(3): 1081-1091. |
Xie F M, Xu F, Liang Z S, et al. Full-cycle operation optimization of acetylene hydrogenation reactor[J]. CIESC Journal, 2018, 69(3): 1081-1091. | |
14 | Chen C B, Sun L, Liu D J, et al. Impact of cumulative fouling characteristics on full-cycle operation optimisation of multi-effect distillation desalination system[J].Chem. Eng. Trans., 2019, 76: 649-654. |
15 | Chen C B, Luo X L, Wang T Y, et al. Minimum motive steam consumption on full cycle optimization with cumulative fouling consideration for MED-TVC desalination system[J]. Desalination, 2021, 507: 115017. |
16 | 王传芳, 罗雄麟. 控制裕量及其在管壳式换热器设计中的应用[J]. 炼油技术与工程, 2004, 34(2): 21-25. |
Wang C F, Luo X L. Overdesign for control and its application in tube-shell heat exchanger design[J]. Petroleum Refinery Engineering, 2004, 34(2): 21-25. | |
17 | 陈军. 低温多效蒸发海水淡化系统工艺流程模拟及优化[D]. 北京: 北京化工大学, 2013. |
Chen J. Process simulation and optimization of low temperature seawater multi-effect distillation system[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
18 | 王世昌. 海水淡化工程[M]. 北京: 化学工业出版社, 2003. |
Wang S C. Desalination Project [M]. Beijing: Chemical Industry Press, 2003. | |
19 | Al-Shammiri M, Safar M. Multi-effect distillation plants: state of the art[J]. Desalination, 1999, 126(1/2/3): 45-59. |
20 | 贾利涛, 刘旭明, 唐智新. 低温多效海水淡化阻垢剂溶垢试验研究[J]. 冶金动力, 2020, 39(12): 66-70. |
Jia L T, Liu X M, Tang Z X. Experimental study on scale dissolving by multi-effect scale inhibitor in low temperature seawater desalination[J]. Metallurgical Power, 2020, 39(12): 66-70. | |
21 | 孙雪, 吴礼云, 李强, 等. 海水淡化产量降低原因分析及提产实践[J]. 水处理技术, 2018, 44(5): 123-126. |
Sun X, Wu L Y, Li Q, et al. Reasons analysis of seawater desalination production reduction and practice of increasing production[J]. Technology of Water Treatment, 2018, 44(5): 123-126. | |
22 | 帅露, 蔡振, 周一卉, 等. 基于Lingo的MED-TVC系统优化设计[J]. 计算机与应用化学, 2016, 33(1): 33-38. |
Shuai L, Cai Z, Zhou Y H, et al. The optimization of MED-TVC system based on Lingo[J]. Computers and Applied Chemistry, 2016, 33(1): 33-38. | |
23 | 曹炳元, 周雪刚. 具有∨-·算子的格线性规划问题[J]. 汕头大学学报(自然科学版), 2005, 20(2): 5-11. |
Cao B Y, Zhou X G. Lattice linear programming with max-product composition operator[J]. Journal of Shantou University (Natural Science Edition), 2005, 20(2): 5-11. | |
24 | 孙琳, 迟进浩, 罗雄麟. 换热器设计裕量与旁路设计分析[J]. 计算机与应用化学, 2008, 25(11): 1369-1373. |
Sun L, Chi J H, Luo X L. The analysis of the overdesign and the bypass design for the heat exchanger[J]. Computers and Applied Chemistry, 2008, 25(11): 1369-1373. | |
25 | 钱颂文. 换热器设计手册[M]. 北京: 化学工业出版社, 2002. |
Qian S W. Heat Exchanger Design Manual[M]. Beijing:Chemical Industry Press, 2002. | |
26 | Fikar M, Latifi M A, Fournier F, et al. Control vector parametrisation versus iterative dynamic programming in dynamic optimisation of a distillation column[J]. Computers & Chemical Engineering, 1998, 22: S625-S628. |
27 | Fikar M, Latifi M A, Corriou J P, et al. CVP-based optimal control of an industrial depropanizer column[J]. Computers & Chemical Engineering, 2000, 24(2): 909-915. |
28 | 王平, 田学民. 一种改进的CVP方法及其在动态优化中的应用[J]. 控制与决策, 2009, 24(11): 1757-1760. |
Wang P, Tian X M. Enhanced control vector parameterization method and its application in dynamic optimization[J]. Control and Decision, 2009, 24(11): 1757-1760. | |
29 | 李国栋. 基于控制向量参数化的动态优化研究[D]. 杭州: 浙江大学, 2015. |
Li G D. Control vector parameterization based dynamic optimization research[D]. Hangzhou: Zhejiang University, 2015. | |
30 | Xu L, Wang S Y, Wang S C, et al. Studies on heat-transfer film coefficients inside a horizontal tube in falling film evaporators[J]. Desalination, 2004, 166: 215-222. |
[1] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[4] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[5] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[6] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[7] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[8] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[9] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[10] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
[11] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[12] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[13] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[14] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[15] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||