CIESC Journal ›› 2022, Vol. 73 ›› Issue (2): 865-875.DOI: 10.11949/0438-1157.20211530
• Energy and environmental engineering • Previous Articles Next Articles
Yingjie YANG1(),He YANG1,Jialong ZHU1,Shuangqi GUO1,Yan SHANG2,Yang LI1,Lijun JIN1,Haoquan HU1()
Received:
2021-10-26
Revised:
2021-12-01
Online:
2022-02-18
Published:
2022-02-05
Contact:
Haoquan HU
杨英杰1(),杨赫1,朱家龙1,郭双淇1,尚妍2,李扬1,靳立军1,胡浩权1()
通讯作者:
胡浩权
作者简介:
杨英杰(1996—),女,硕士研究生,基金资助:
CLC Number:
Yingjie YANG, He YANG, Jialong ZHU, Shuangqi GUO, Yan SHANG, Yang LI, Lijun JIN, Haoquan HU. Interaction between functional groups during slow pyrolysis of Naomaohu coal[J]. CIESC Journal, 2022, 73(2): 865-875.
杨英杰, 杨赫, 朱家龙, 郭双淇, 尚妍, 李扬, 靳立军, 胡浩权. 淖毛湖煤慢速热解过程官能团相互作用[J]. 化工学报, 2022, 73(2): 865-875.
Add to citation manager EndNote|Ris|BibTeX
样品 | 工业分析/%(质量) | 元素分析/%(质量,daf) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | C | H | N | O | S | |
NMHcoal | 3.37 | 5.29 | 54.83 | 71.64 | 6.01 | 0.85 | 21.08 | 0.42 |
NRPchar | 2.43 | 10.36 | 14.37 | 90.19 | 1.46 | 2.25 | 5.33 | 0.77 |
Table 1 Proximate and ultimate analyses of NMHcoal and NRPchar
样品 | 工业分析/%(质量) | 元素分析/%(质量,daf) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | C | H | N | O | S | |
NMHcoal | 3.37 | 5.29 | 54.83 | 71.64 | 6.01 | 0.85 | 21.08 | 0.42 |
NRPchar | 2.43 | 10.36 | 14.37 | 90.19 | 1.46 | 2.25 | 5.33 | 0.77 |
峰位置/cm-1 | 峰归属 | 峰面积的比例 | |
---|---|---|---|
NMHcoal | NRPchar | ||
2825 | O—CH3 | 3.20 | 3.39 |
2851、2920 | sym.R2CH2、asym.R2CH2 | 61.60 | 54.97 |
2874、2953 | sym.RCH3、asym.RCH3 | 24.69 | 22.94 |
2893 | R3CH | 10.51 | 18.69 |
Table 2 Fitting results of NMHcoal and NRPchar in 2800—3000 cm-1
峰位置/cm-1 | 峰归属 | 峰面积的比例 | |
---|---|---|---|
NMHcoal | NRPchar | ||
2825 | O—CH3 | 3.20 | 3.39 |
2851、2920 | sym.R2CH2、asym.R2CH2 | 61.60 | 54.97 |
2874、2953 | sym.RCH3、asym.RCH3 | 24.69 | 22.94 |
2893 | R3CH | 10.51 | 18.69 |
样品 | 初温/ ℃ | 峰温/ ℃ | 终温/ ℃ | 失重量/% | DTGmax/(%/℃) | ||
---|---|---|---|---|---|---|---|
实验值 | 加权平均值 | 实验值 | 加权平均值 | ||||
NMHcoal | 201 | 443 | 636 | 47.3 | — | -0.215 | — |
NRPchar | 368 | — | — | 22.3 | — | -0.058 | — |
20% char | 197 | 443 | 637 | 41.8 | 42.3 | -0.166 | -0.175 |
40% char | 203 | 443 | 625 | 34.8 | 37.3 | -0.134 | -0.134 |
50% char | 209 | 442 | 625 | 32.7 | 34.8 | -0.101 | -0.114 |
60% char | 203 | 443 | 608 | 29.5 | 32.3 | -0.097 | -0.094 |
80% char | 207 | 443 | 583 | 24.6 | 27.3 | -0.055 | -0.054 |
Table 3 Characteristic parameters of NMHcoal, NRPchar and NMHcoal/NRPchar pyrolysis
样品 | 初温/ ℃ | 峰温/ ℃ | 终温/ ℃ | 失重量/% | DTGmax/(%/℃) | ||
---|---|---|---|---|---|---|---|
实验值 | 加权平均值 | 实验值 | 加权平均值 | ||||
NMHcoal | 201 | 443 | 636 | 47.3 | — | -0.215 | — |
NRPchar | 368 | — | — | 22.3 | — | -0.058 | — |
20% char | 197 | 443 | 637 | 41.8 | 42.3 | -0.166 | -0.175 |
40% char | 203 | 443 | 625 | 34.8 | 37.3 | -0.134 | -0.134 |
50% char | 209 | 442 | 625 | 32.7 | 34.8 | -0.101 | -0.114 |
60% char | 203 | 443 | 608 | 29.5 | 32.3 | -0.097 | -0.094 |
80% char | 207 | 443 | 583 | 24.6 | 27.3 | -0.055 | -0.054 |
序号 | 化合物 | NMHcoal-fb | NMHcoal/NRPchar-fb | NRPchar-fb |
---|---|---|---|---|
1环芳香化合物 | ||||
1 | 甲苯 | 0.806 | 0.243 | 0.732 |
2 | 乙苯 | 0.366 | 0.206 | 0.058 |
3 | 对二甲苯 | 1.400 | 0.594 | 0.409 |
4 | 1,2,3-三甲苯 | 1.362 | 1.194 | — |
5 | 苯酚 | 6.274 | 5.582 | 1.548 |
6 | 2-甲基苯酚 | 9.222 | 8.639 | 0.916 |
7 | 2,6-二甲基苯酚 | 10.04 | 6.08 | — |
8 | 2-乙基苯酚 | 0.475 | 1.709 | — |
9 | 3-甲基-1,2-苯二酚 | 0.715 | 2.765 | — |
10 | 2,3,6-三甲基苯酚 | 0.371 | 0.840 | — |
11 | 4,5-二甲基-1,3-苯二酚 | 0.445 | 0.594 | — |
12 | 4-乙基-1,3-苯二酚 | 0.431 | 0.814 | — |
2环芳香化合物 | ||||
13 | 茚 | 0.437 | 0.280 | 0.061 |
14 | 萘 | 1.238 | 1.647 | 66.852 |
15 | 4,7-二甲基苯并呋喃 | 0.317 | 0.230 | — |
16 | 1,3-二甲基-1-氢茚 | 0.85 | 1.006 | — |
17 | 2,3-二氢化-5-羟基茚 | 0.744 | 1.236 | — |
18 | 2-甲基萘 | 3.377 | 2.912 | — |
19 | 2,6-二甲基萘 | 3.117 | 2.844 | — |
20 | 1,4,6-三甲基萘 | 3.266 | 4.052 | — |
21 | 2-甲基-1-萘酚 | 3.388 | 3.994 | — |
3环以上芳香化合物 | ||||
22 | 1-甲基-9H-笏 | 0.268 | 0.874 | — |
23 | 菲 | — | 1.132 | 5.773 |
24 | 3,6-二甲基菲 | 0.187 | — | — |
25 | 2,3,5-三甲基菲 | — | 0.131 | — |
26 | 芘 | 0.974 | 4.428 | |
27 | 荧蒽 | — | — | 5.437 |
28 | 苯并芘 | — | 0.340 | 1.080 |
29 | 苯并荧蒽 | — | 1.692 | — |
30 | 苝 | 0.166 | 0.405 | — |
31 | 苯并苝 | — | 0.548 | 0.117 |
长链脂肪烃化合物 | ||||
32 | 十一烷 | 0.741 | 0.552 | — |
33 | 十二烷 | 0.958 | 1.567 | — |
34 | 十四烷 | 1.058 | 1.383 | — |
35 | 十五烷 | 1.009 | 1.165 | — |
36 | 十七烷 | 1.004 | 1.100 | — |
37 | 十八烷 | 0.945 | 0.947 | — |
38 | 十九烷 | 0.873 | 0.962 | — |
39 | 二十烷 | 0.909 | 1.025 | — |
40 | 二十一烷 | 1.005 | 1.154 | — |
41 | 二十二烷 | 1.110 | 1.170 | — |
42 | 二十三烷 | 1.357 | 1.445 | — |
43 | 二十四烷 | 1.170 | 1.035 | — |
44 | 二十五烷 | 1.019 | 2.473 | — |
Table 4 Main single-ring, polycyclic aromatic compounds and long-chain aliphatic hydrocarbons detected in tar samples obtained from pyrolysis of NMHcoal, NRPchar and their mixtures at 500℃
序号 | 化合物 | NMHcoal-fb | NMHcoal/NRPchar-fb | NRPchar-fb |
---|---|---|---|---|
1环芳香化合物 | ||||
1 | 甲苯 | 0.806 | 0.243 | 0.732 |
2 | 乙苯 | 0.366 | 0.206 | 0.058 |
3 | 对二甲苯 | 1.400 | 0.594 | 0.409 |
4 | 1,2,3-三甲苯 | 1.362 | 1.194 | — |
5 | 苯酚 | 6.274 | 5.582 | 1.548 |
6 | 2-甲基苯酚 | 9.222 | 8.639 | 0.916 |
7 | 2,6-二甲基苯酚 | 10.04 | 6.08 | — |
8 | 2-乙基苯酚 | 0.475 | 1.709 | — |
9 | 3-甲基-1,2-苯二酚 | 0.715 | 2.765 | — |
10 | 2,3,6-三甲基苯酚 | 0.371 | 0.840 | — |
11 | 4,5-二甲基-1,3-苯二酚 | 0.445 | 0.594 | — |
12 | 4-乙基-1,3-苯二酚 | 0.431 | 0.814 | — |
2环芳香化合物 | ||||
13 | 茚 | 0.437 | 0.280 | 0.061 |
14 | 萘 | 1.238 | 1.647 | 66.852 |
15 | 4,7-二甲基苯并呋喃 | 0.317 | 0.230 | — |
16 | 1,3-二甲基-1-氢茚 | 0.85 | 1.006 | — |
17 | 2,3-二氢化-5-羟基茚 | 0.744 | 1.236 | — |
18 | 2-甲基萘 | 3.377 | 2.912 | — |
19 | 2,6-二甲基萘 | 3.117 | 2.844 | — |
20 | 1,4,6-三甲基萘 | 3.266 | 4.052 | — |
21 | 2-甲基-1-萘酚 | 3.388 | 3.994 | — |
3环以上芳香化合物 | ||||
22 | 1-甲基-9H-笏 | 0.268 | 0.874 | — |
23 | 菲 | — | 1.132 | 5.773 |
24 | 3,6-二甲基菲 | 0.187 | — | — |
25 | 2,3,5-三甲基菲 | — | 0.131 | — |
26 | 芘 | 0.974 | 4.428 | |
27 | 荧蒽 | — | — | 5.437 |
28 | 苯并芘 | — | 0.340 | 1.080 |
29 | 苯并荧蒽 | — | 1.692 | — |
30 | 苝 | 0.166 | 0.405 | — |
31 | 苯并苝 | — | 0.548 | 0.117 |
长链脂肪烃化合物 | ||||
32 | 十一烷 | 0.741 | 0.552 | — |
33 | 十二烷 | 0.958 | 1.567 | — |
34 | 十四烷 | 1.058 | 1.383 | — |
35 | 十五烷 | 1.009 | 1.165 | — |
36 | 十七烷 | 1.004 | 1.100 | — |
37 | 十八烷 | 0.945 | 0.947 | — |
38 | 十九烷 | 0.873 | 0.962 | — |
39 | 二十烷 | 0.909 | 1.025 | — |
40 | 二十一烷 | 1.005 | 1.154 | — |
41 | 二十二烷 | 1.110 | 1.170 | — |
42 | 二十三烷 | 1.357 | 1.445 | — |
43 | 二十四烷 | 1.170 | 1.035 | — |
44 | 二十五烷 | 1.019 | 2.473 | — |
Fig.8 Synergetic effects from single-ring, polycyclic aromatic compounds and long-chain aliphatic hydrocarbons obtained from NMHcoal/NRPchar (5∶5)at 500℃ (The numbers 1—44 on x-axis correspond to the compounds in Table 4)
样品 | 比表面积/ (m2/g) | 孔容/ (cm3/g) | 孔径/nm |
---|---|---|---|
NMHcoal-fb | 10.7 | 0.016 | 5.44 |
NRPchar-fb | 285.9 | 0.171 | 4.27 |
NMHcoal/NRPchar-fb(实验值) | 105.0 | 0.088 | 4.23 |
NMHcoal/NRPchar -fb(加权平均值) | 148.3 | 0.093 | 4.86 |
Table 5 Specific surface area and pore structure parameters of char
样品 | 比表面积/ (m2/g) | 孔容/ (cm3/g) | 孔径/nm |
---|---|---|---|
NMHcoal-fb | 10.7 | 0.016 | 5.44 |
NRPchar-fb | 285.9 | 0.171 | 4.27 |
NMHcoal/NRPchar-fb(实验值) | 105.0 | 0.088 | 4.23 |
NMHcoal/NRPchar -fb(加权平均值) | 148.3 | 0.093 | 4.86 |
峰 | 碳类型 | 符号 | 峰化学位移 | 摩尔分取/% | ||
---|---|---|---|---|---|---|
NMHcoal-fb | NMHcoal/NRPchar-fb | NMHcoal-fb | NMHcoal/NRPchar-fb | |||
脂肪碳 | ||||||
1 | 脂肪甲基 | 12.2 | 11.0 | 1.64 | 0.74 | |
2 | 芳环甲基 | 20.2 | 20.3 | 3.13 | 1.24 | |
3 | 亚甲基 | 30.2 | 29.2 | 1.36 | 0.99 | |
4 | 次甲基 | 36.8 | 36.1 | 1.88 | 1.67 | |
5 | 季碳 | 45.5 | 45.9 | 2.23 | 2.81 | |
6 | 连氧脂肪碳 | 55.5 67.6 86.0 | 55.0 66.7 88.0 | 15.12 | 16.98 | |
总 | 25.36 | 24.43 | ||||
芳碳 | ||||||
7 | 质子化邻氧芳碳 | 108.9 | 108 | 5.49 | 5.96 | |
8 | 烷基化邻氧芳碳 | 116.1 | 116.8 | 4.78 | 7.64 | |
9 | 质子化芳碳 | 122 | 122.3 | 7.13 | 7.86 | |
10 | 桥头芳碳 | 129 | 128.6 | 23.61 | 24.29 | |
11 | 烷基取代芳碳 | 138.9 147.1 | 138.8 147.8 | 13.13 | 11.06 | |
12 | 连氧芳碳 | 155 165 | 155 165 | 6.51 | 4.45 | |
总 | 60.65 | 61.26 | ||||
羰基 | ||||||
13 | 羧基、酯的羰基碳 | 178.5 | 176.3 | 1.55 | 1.02 | |
14 | 酮、醛的碳 | 199.3 | 197.3 | 12.41 | 13.27 | |
总 | 13.96 | 14.29 |
Table 6 Distribution of carbon types in NMHcoal-fb and NMHcoal /NRPchar(5∶5)-fb
峰 | 碳类型 | 符号 | 峰化学位移 | 摩尔分取/% | ||
---|---|---|---|---|---|---|
NMHcoal-fb | NMHcoal/NRPchar-fb | NMHcoal-fb | NMHcoal/NRPchar-fb | |||
脂肪碳 | ||||||
1 | 脂肪甲基 | 12.2 | 11.0 | 1.64 | 0.74 | |
2 | 芳环甲基 | 20.2 | 20.3 | 3.13 | 1.24 | |
3 | 亚甲基 | 30.2 | 29.2 | 1.36 | 0.99 | |
4 | 次甲基 | 36.8 | 36.1 | 1.88 | 1.67 | |
5 | 季碳 | 45.5 | 45.9 | 2.23 | 2.81 | |
6 | 连氧脂肪碳 | 55.5 67.6 86.0 | 55.0 66.7 88.0 | 15.12 | 16.98 | |
总 | 25.36 | 24.43 | ||||
芳碳 | ||||||
7 | 质子化邻氧芳碳 | 108.9 | 108 | 5.49 | 5.96 | |
8 | 烷基化邻氧芳碳 | 116.1 | 116.8 | 4.78 | 7.64 | |
9 | 质子化芳碳 | 122 | 122.3 | 7.13 | 7.86 | |
10 | 桥头芳碳 | 129 | 128.6 | 23.61 | 24.29 | |
11 | 烷基取代芳碳 | 138.9 147.1 | 138.8 147.8 | 13.13 | 11.06 | |
12 | 连氧芳碳 | 155 165 | 155 165 | 6.51 | 4.45 | |
总 | 60.65 | 61.26 | ||||
羰基 | ||||||
13 | 羧基、酯的羰基碳 | 178.5 | 176.3 | 1.55 | 1.02 | |
14 | 酮、醛的碳 | 199.3 | 197.3 | 12.41 | 13.27 | |
总 | 13.96 | 14.29 |
1 | Wang N, Yu J L, Tahmasebi A, et al. Experimental study on microwave pyrolysis of an Indonesian low-rank coal[J]. Energy & Fuels, 2014, 28(1): 254-263. |
2 | 袁帅, 陈雪莉, 李军, 等. 煤快速热解固相和气相产物生成规律[J]. 化工学报, 2011, 62(5): 1382-1388. |
Yuan S, Chen X L, Li J, et al. Formations of solid and gas phase products during rapid pyrolysis of coal[J]. CIESC Journal, 2011, 62(5): 1382-1388. | |
3 | Wang Z Q, Bai Z Q, Li W, et al. Quantitative study on cross-linking reactions of oxygen groups during liquefaction of lignite by a new model system[J]. Fuel Processing Technology, 2010, 91(4): 410-413. |
4 | Ibarra J V, Cervero I, García M, et al. Influence of cross-linking on tar formation during pyrolysis of low-rank coals[J]. Fuel Processing Technology, 1990, 24: 19-25. |
5 | 王志青, 白宗庆, 李文, 等. 吡啶预处理抑制煤热解过程中交联反应的研究[J]. 燃料化学学报, 2008, 36(6): 641-645. |
Wang Z Q, Bai Z Q, Li W, et al. Suppressing cross-linking reactions during pyrolysis of lignite pretreated by pyridine[J]. Journal of Fuel Chemistry and Technology, 2008, 36(6): 641-645. | |
6 | Li J G, Zhu J L, Hu H Q, et al. Co-pyrolysis of Baiyinhua lignite and pine in an infrared-heated fixed bed to improve tar yield[J]. Fuel, 2020, 272: 117739. |
7 | Chen Y Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33. |
8 | Haykiri-Acma H, Yaman S. Interaction between biomass and different rank coals during co-pyrolysis[J]. Renewable Energy, 2010, 35(1): 288-292. |
9 | 王刚, 李爱民, 全翠. 生物质与聚乳酸塑料共热解特性[J]. 化工学报, 2009, 60(7): 1787-1792. |
Wang G, Li A M, Quan C. Thermal decomposition of biomass/polylactic acid during co-pyrolysis[J]. Journal of Chemical Industry and Engineering(China), 2009, 60(7): 1787-1792. | |
10 | Zhang Y, Zhang X Q, Zhong Q F, et al. Structural differences of spontaneous combustion prone inertinite-rich Chinese lignite coals: insights from XRD, solid-state 13C NMR, LDIMS, and HRTEM[J]. Energy & Fuels, 2019, 33(5): 4575-4584. |
11 | Jing Z H, Rodrigues S, Strounina E, et al. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures[J]. International Journal of Coal Geology, 2019, 201: 1-13. |
12 | Solum M S, Pugmire R J, Grant D M. 13C solid-state NMR of Argonne-premium coals[J]. Energy & Fuels, 1989, 3(2): 187-193. |
13 | Cao S Q, Wang D C, Wang M Y, et al. In‐situ upgrading of coal pyrolysis tar with steam catalytic cracking over Ni/Al2O3 catalysts[J]. ChemistrySelect, 2020, 5(16): 4905-4912. |
14 | Zhu J L, Jin L J, Luo Y W, et al. Fast co-pyrolysis of a massive Naomaohu coal and cedar mixture using rapid infrared heating[J]. Energy Conversion and Management, 2020, 205: 112442. |
15 | 陈宗定, 王永刚, 许德平, 等. 褐煤热解过程中半焦重整催化剂性质的变化[J]. 燃料化学学报, 2017, 45(8): 908-915. |
Chen Z D, Wang Y G, Xu D P, et al. Changes in char properties after catalytic reforming volatiles from pyrolysis of brown coal[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 908-915. | |
16 | Mae K, Maki T, Miura K. A new method for estimating the cross-linking reaction during the pyrolysis of brown coal[J]. Journal of Chemical Engineering of Japan, 2002, 35(8): 778-785. |
17 | Qiu S X, Zhang S F, Zhou X H, et al. Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis[J]. Renewable Energy, 2019, 136: 308-316. |
18 | Fletcher T H, Hardesty D R. Compilation of Sandia coal devolatilization data: milestone report[R]. Livermore, CA, USA: Sandia National Laboratories, 1992. |
19 | Solomon P R, Serio M A, Carangelo R M, et al. Very rapid coal pyrolysis[J]. Fuel, 1986, 65(2): 182-194. |
20 | Niu Z Y, Liu G J, Yin H, et al. In-situ FTIR study of reaction mechanism and chemical kinetics of a Xundian lignite during non-isothermal low temperature pyrolysis[J]. Energy Conversion and Management, 2016, 124: 180-188. |
21 | Xiong G, Li Y S, Jin L J, et al. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 262-267. |
22 | Iglesias M J, del Rı́o J C, Laggoun-Défarge F, et al. Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(1): 1-34. |
23 | 商铁成. 热解温度对低阶煤热解性能影响研究[J]. 洁净煤技术, 2014, 20(6): 28-31. |
Shang T C. Influence of temperature on pyrolysis properties of low rank coal[J]. Clean Coal Technology, 2014, 20(6): 28-31. | |
24 | Liang L T, Huang W, Gao F X, et al. Mild catalytic depolymerization of low rank coals: a novel way to increase tar yield[J]. RSC Advances, 2015, 5(4): 2493-2503. |
25 | 杨亚慧. 淖毛湖煤慢速热解过程化学渗透热解模型研究[D]. 大连: 大连理工大学, 2021. |
Yang Y H. Study on chemical percolation devolatilization model for slow pyrolysis process of NMH coal[D]. Dalian: Dalian University of Technology, 2021. | |
26 | Wu Y F, Zhu J L, Zhao S, et al. Co-pyrolysis behaviors of low-rank coal and polystyrene with in-situ pyrolysis time-of-flight mass spectrometry[J]. Fuel, 2021, 286: 119461. |
27 | 陈霞, 徐艳梅, 陆人春, 等. 淖毛湖煤及显微组分热解半焦微观结构分析[J]. 高校化学工程学报, 2020, 34(3): 831-837. |
Chen X, Xu Y M, Lu R C, et al. Microstructure analysis of char from pyrolysis of Naomaohu coal and macerals[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(3): 831-837. | |
28 | 韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39(11): 2293-2299. |
Han F, Zhang Y G, Meng A H, et al. FTIR analysis of Yunnan lignite[J]. Journal of China Coal Society, 2014, 39(11): 2293-2299. | |
29 | Peng C N, Zhang G Y, Yue J R, et al. Pyrolysis of black liquor for phenols and impact of its inherent alkali[J]. Fuel Processing Technology, 2014, 127: 149-156. |
30 | Yang F, Hou Y C, Wu W Z, et al. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids[J]. Fuel, 2017, 189: 408-418. |
31 | Xiong Y K, Jin L J, Li Y, et al. Structural features and pyrolysis behaviors of extracts from microwave-assisted extraction of a low-rank coal with different solvents[J]. Energy & Fuels, 2019, 33(1): 106-114. |
32 | Li L, Fan H J, Hu H Q. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153: 70-77. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[4] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[5] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[6] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[7] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[8] | Zhenbao LI, Chao LI, Hu WANG, Shaorui WANG, Quan LI. The microscopic mechanism on MPP inhibiting explosion of Al-Mg alloy powder [J]. CIESC Journal, 2023, 74(8): 3608-3614. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[11] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[12] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[13] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[14] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[15] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||