CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1732-1742.DOI: 10.11949/0438-1157.20211570
• Energy and environmental engineering • Previous Articles Next Articles
Yiwei ZHANG(),Hairong TANG,Yong HE,Yanqun ZHU,Zhihua WANG()
Received:
2021-11-05
Revised:
2022-01-21
Online:
2022-04-25
Published:
2022-04-05
Contact:
Zhihua WANG
通讯作者:
王智化
作者简介:
张逸伟(1998—),男,硕士研究生,基金资助:
CLC Number:
Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation[J]. CIESC Journal, 2022, 73(4): 1732-1742.
张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742.
Add to citation manager EndNote|Ris|BibTeX
工况序号 | 测试工况 |
---|---|
1# | O3/NO=2,初始约250 μl/L NO,无SO2 |
2# | O3/NO=1.6,初始约250 μl/L NO,无SO2 |
3# | O3/NO=1.3,初始约250 μl/L NO,无SO2 |
4# | O3/NO=1,初始约250 μl/L NO,无SO2 |
5# | O3/NO=0.6,初始约250 μl/L NO,无SO2 |
6# | O3/NO=2,初始约250 μl/L NO,约100 μl/L SO2 |
7# | O3/NO=1.6,初始约250 μl/L NO,约100 μl/L SO2 |
8# | O3/NO=1.3,初始约250 μl/L NO,约100 μl/L SO2 |
9# | O3/NO=1,初始约250 μl/L NO,约100 μl/L SO2 |
10# | O3/NO=0.6,初始约250 μl/L NO,约100 μl/L SO2 |
Table 1 Working conditions during the test
工况序号 | 测试工况 |
---|---|
1# | O3/NO=2,初始约250 μl/L NO,无SO2 |
2# | O3/NO=1.6,初始约250 μl/L NO,无SO2 |
3# | O3/NO=1.3,初始约250 μl/L NO,无SO2 |
4# | O3/NO=1,初始约250 μl/L NO,无SO2 |
5# | O3/NO=0.6,初始约250 μl/L NO,无SO2 |
6# | O3/NO=2,初始约250 μl/L NO,约100 μl/L SO2 |
7# | O3/NO=1.6,初始约250 μl/L NO,约100 μl/L SO2 |
8# | O3/NO=1.3,初始约250 μl/L NO,约100 μl/L SO2 |
9# | O3/NO=1,初始约250 μl/L NO,约100 μl/L SO2 |
10# | O3/NO=0.6,初始约250 μl/L NO,约100 μl/L SO2 |
1 | 国家统计局. 中国统计年鉴2020 [M]. 北京:中国统计出版社, 2020: 4-5. |
National Bureau of Statistics. China Statistical Yearbook-2020[M]. Beijing: China Statistics Press, 2020: 4-5. | |
2 | Mondal M K, Chelluboyana V R. New experimental results of combined SO2 and NO removal from simulated gas stream by NaClO as low-cost absorbent[J]. Chemical Engineering Journal, 2013, 217: 48-53. |
3 | Deshwal B R, Jin D S, Lee S H, et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor[J]. Journal of Hazardous Materials, 2008, 150(3): 649-655. |
4 | Chu H, Chien T W, Li S Y. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions[J]. Science of the Total Environment, 2001, 275(1/2/3): 127-135. |
5 | Hao R L, Yang S, Yuan B, et al. Simultaneous desulfurization and denitrification through an integrative process utilizing NaClO2 /NaS2O8 [J]. Fuel Processing Technology, 2017, 159: 145-152. |
6 | Zhao Y, Hao R L, Yuan B, et al. Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant[J]. Journal of Hazardous Materials, 2016, 301: 74-83. |
7 | Fang P, Cen C P, Tang Z X, et al. Simultaneous removal of SO2 and NO x by wet scrubbing using urea solution [J]. Chemical Engineering Journal, 2011, 168(1): 52-59. |
8 | Chmielewski A G. Industrial applications of electron beam flue gas treatment—from laboratory to the practice[J]. Radiation Physics and Chemistry, 2007, 76(8/9): 1480-1484. |
9 | Xie Y, Chen Y, Ma Y G, et al. Investigation of simultaneous adsorption of SO2 and NO on γ-alumina at low temperature using DRIFTS[J]. Journal of Hazardous Materials, 2011, 195: 223-229. |
10 | Wilde J D, Marin G B. Investigation of simultaneous adsorption of SO2 and NO x on Na-γ-alumina with transient techniques[J]. Catalysis Today, 2000, 62(4): 319-328. |
11 | 刘子红. 改性活性炭纤维协同脱除燃煤烟气中多种污染物的实验及放大研究[D]. 武汉: 华中科技大学, 2014. |
Liu Z H. Joint removal research and scale-up experiment of multiple pollutants in coal fired flue gas based on modified activated carbon fiber[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
12 | 王智化. 燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D]. 杭州: 浙江大学, 2005. |
Wang Z H. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow[D]. Hangzhou: Zhejiang University, 2005. | |
13 | Lin F W, Wang Z H, Zhang Z M, et al. Flue gas treatment with ozone oxidation: an overview on NO x, organic pollutants, and mercury[J]. Chemical Engineering Journal, 2020, 382: 123030. |
14 | 黄元凯, 朱燕群, 邵嘉铭, 等. 臭氧脱硝过程中硝酸盐气溶胶的生成机理及控制[J]. 洁净煤技术, 2020, 26(5): 77-83. |
Huang Y K, Zhu Y Q, Shao J M, et al. Formation mechanism and control of nitrate aerosol during ozone deNO x process[J]. Clean Coal Technology, 2020, 26(5): 77-83. | |
15 | 赵雪, 程茜, 侯俊先. 脱硫脱硝行业2017年发展综述[J]. 中国环保产业, 2018 (7): 10-24. |
Zhao X, Cheng X, Hou J X. Development report on desulfurization and denitration industry in 2017[J]. China Environmental Protection Industry, 2018 (7): 10-24. | |
16 | 宫家宏. 电站煤粉炉氮氧化物控制技术[J]. 电力设备管理, 2018(10): 84-88, 91. |
Gong J H. Nitrogen oxide control technology of coal powder furnace in power plant[J]. Electric Power Equipment Management, 2018(10): 84-88, 91. | |
17 | 陈玉龙, 王锐. 关于锅炉脱硝改造后产生堵灰及腐蚀问题探讨[J]. 锅炉制造, 2018(6): 40-41. |
Chen Y L, Wang R. Discussion on blockage and corrosion of boiler after denitrification[J]. Boiler Manufacturing, 2018(6): 40-41. | |
18 | Østberg M, Dam-Johansen K. Empirical modeling of the selective non-catalytic reduction of NO: comparison with large-scale experiments and detailed kinetic modeling[J]. Chemical Engineering Science, 1994, 49(12): 1897-1904. |
19 | 王小娥. 选择性非催化还原烟气脱硝技术在CFB锅炉及煤粉炉上的应用比较[D]. 上海: 上海交通大学, 2014. |
Wang X E. The comparison of engineering application of SNCR technology for CFB boilers and PC boilers[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
20 | Wang Z H, Zhou J H, Zhu Y Q, et al. Simultaneous removal of NO x, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results[J]. Fuel Processing Technology, 2007, 88(8): 817-823. |
21 | Zheng C H, Xu C R, Zhang Y X, et al. Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system[J]. Applied Energy, 2014, 129: 187-194. |
22 | 林法伟. 活性分子臭氧耦合催化深度脱除烟气中氮氧化物的基础特性研究[D]. 杭州: 浙江大学, 2018. |
Lin F W. Basic characteristics study on NO x deep removal in the flue gas by active molecules (ozone)-catalytic method[D]. Hangzhou: Zhejiang University, 2018. | |
23 | 张明慧. 烟气中超高浓度氮氧化物的前置氧化脱除机理研究[D]. 杭州: 浙江大学, 2015. |
Zhang M H. Experimental and mechanism study on the removal of high concentration nitrogen oxides in the flue gas by pre-oxidization[D]. Hangzhou: Zhejiang University, 2015. | |
24 | 杨业. 臭氧深度氧化烟气结合湿法喷淋脱除氮氧化物试验与机理研究[D]. 杭州: 浙江大学, 2017. |
Yang Y. Experimental and mechanism study on the removal of nitrogen oxides in flue gas with ozone deeply oxidation treatment[D]. Hangzhou: Zhejiang University, 2017. | |
25 | 王智化, 周俊虎, 魏林生, 等. 用臭氧氧化技术同时脱除锅炉烟气中NO x 及SO2的试验研究[J]. 中国电机工程学报, 2007, 27(11): 1-5. |
Wang Z H, Zhou J H, Wei L S, et al. Experimental research for the simultaneous removal of NO x and SO2 in flue gas by O3 [J]. Proceedings of the CSEE, 2007, 27(11): 1-5. | |
26 | 张利波, 刘佩希, 张椰, 等. 220 t/h煤粉锅炉臭氧氧化NO x 超低排放试验研究[J]. 洁净煤技术, 2019, 25(3): 105-109. |
Zhang L B, Liu P X, Zhang Y, et al. Experimental study on ultra-low emission of nitrogen oxide using ozone oxidation in 220 t /h coal-fired boiler[J]. Clean Coal Technology, 2019, 25(3): 105-109. | |
27 | Shao J M, Xu C Q, Wang Z H, et al. NO x reduction in a 130 t/h biomass-fired circulating fluid bed boiler using coupled ozonation and wet absorption technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18134-18140. |
28 | 马强. 烟气中多种污染物超低排放的活性分子氧化及一体化脱除机理研究[D]. 杭州: 浙江大学, 2016. |
Ma Q. Study on active molecule oxidation and removal mechanism of ultra-low emissions of multiple flue gas pollutants[D]. Hangzhou: Zhejiang University, 2016. | |
29 | 朱燕群, 杨业, 黄建鹏, 等. 橡胶厂60000m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870. |
Zhu Y Q, Yang Y, Huang J P, et al. Removal of NO x by ozone oxidation from flue gas of 60000m3/h carbon black drying furnace of rubber plant[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(10): 1865-1870. | |
30 | 张建平, 万凯迪, 王荣涛, 等. 生物质循环流化床锅炉臭氧脱硝试验研究[J]. 环境工程技术学报,2019, 9(1): 8-13. |
Zhang J P, Wan K D, Wang R T, et al. Experimental study on ozone denitration of a biomass circulating fluidized bed boiler[J]. Journal of Environmental Engineering Technology, 2019, 9(1): 8-13. | |
31 | 赵中华, 邱祖民. 桃江流域农业区氮平衡及时空差异性[J]. 水电能源科学, 2012, 30(5): 83-86. |
Zhao Z H, Qiu Z M. Nitrogen balance and its space-time difference of agricultural region in Tao River Basin [J]. Water Resources and Power, 2012, 30(5): 83-86. | |
32 | 张虎, 佟会玲, 王晋元, 等. 用KMnO4调质钙基吸收剂从燃煤烟气同时脱硫脱硝[J]. 化工学报, 2007, 58(7): 1810-1815. |
Zhang H, Tong H L, Wang J Y, et al. Simultaneous removal of SO2 and NO by using calcium absorbent with KMnO4 as additive[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1810-1815. | |
33 | 邵嘉铭. 基于锰系催化剂催化脱除烟气中NO x 和VOCs的试验与机理研究[D]. 杭州: 浙江大学, 2020. |
Shao J M. Experimental and mechanism investigation on catalytic removal of NO x and VOCs over Mn-based catalysts[D]. Hangzhou: Zhejiang University, 2020. | |
34 | 刘毅. 燃煤烟气中SO3气相生成的实验与反应动力学研究[J]. 锅炉技术, 2019, 50(6): 74-77. |
Liu Y. Experimental and reaction kinetics studies of SO3 homogeneous formation in coal-fired flue gas[J]. Boiler Technology, 2019, 50(6): 74-77. | |
35 | 刘英华, 刘启贞, 徐建林. 燃煤电厂烟气脱硫设施脱硫效率计算方法的探讨[J]. 能源环境保护, 2008, 22(6): 48-51. |
Liu Y H, Liu Q Z, Xu J L. Discussion on the calculation methods of the efficiency of FGD[J]. Energy Environmental Protection, 2008, 22(6): 48-51. | |
36 | 张瑞, 张佳, 郭少鹏, 等. 臭氧氧化同时脱除烟气中NO和SO2的研究[J]. 化学世界, 2015, 56(3): 158-161, 165. |
Zhang R, Zhang J, Guo S P, et al. Study on simultaneous removal of NO and SO2 from flue gas by ozone oxidation[J]. Chemical World, 2015, 56(3): 158-161, 165. | |
37 | 文亮. 山东地区灰霾期间硝酸盐生成机制研究[D]. 济南: 山东大学, 2015. |
Wen L. Formation mechanism of particulate nitrate during haze period in Shandong[D]. Jinan: Shandong University, 2015. | |
38 | 张玉华. 燃煤烟气SCR脱硝对细颗粒物排放特性影响的试验研究[D]. 南京: 东南大学, 2015. |
Zhang Y H. Investigation on the effects of SCR on emission characteristics of PM2.5 from coal-fired flue gas[D]. Nanjing: Southeast University, 2015. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[11] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[14] | Qianqian WANG, Mingyan LIU, Yongli MA. Study on the effect of ultrasonic degassing in water [J]. CIESC Journal, 2023, 74(4): 1693-1702. |
[15] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||