CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2381-2396.doi: 10.11949/0438-1157.20220063
• Reviews and monographs • Previous Articles Next Articles
CLC Number:
1 | Patterson C. World Alzheimer report 2018—the state of the art of dementia research: new frontiers[R]. London, UK: Alzheime's Disease International (ADI), 2018. |
2 | Heneka M T, Golenbock D T, Latz E. Innate immunity in Alzheimer's disease[J]. Nature Immunology, 2015, 16(3): 229-236. |
3 | Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease[J]. Nature Reviews Neurology, 2019, 15(2): 73-88. |
4 | Cline E N, Bicca M A, Viola K L, et al. The amyloid-β oligomer hypothesis: beginning of the third decade[J]. Journal of Alzheimer's Disease: JAD, 2018, 64(s1): S567-S610. |
5 | Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356. |
6 | Jeremic D, Jiménez-Díaz L, Navarro-López J D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review[J]. Ageing Research Reviews, 2021, 72: 101496. |
7 | Madhu P, Mukhopadhyay S. Distinct types of amyloid-β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer's disease[J]. Journal of Cell Biochemistry, 2021, 122(11): 1594-1608. |
8 | Wang J, Gu B J, Masters C L, et al. A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain[J]. Nature Review Neurology, 2017, 13(10): 612-623. |
9 | Han X, He G F. Toward a rational design to regulate β-amyloid fibrillation for Alzheimer's disease treatment[J]. ACS Chemical Neuroscience, 2018, 9(2): 198-210 |
10 | Banerjee S, Sun Z Q, Hayden E Y, et al. Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy[J]. ACS Nano, 2017, 11(12): 12202-12209. |
11 | Lührs T, Ritter C, Adrian M, et al. 3D structure of Alzheimer's amyloid-β(1–42) fibrils[J]. PNAS, 2005, 102(48): 17342-17347. |
12 | Bitan G, Kirkitadze M D, Lomakin A, et al. Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways[J]. PNAS, 2003, 100(1): 330-335. |
13 | Huang W L, Li J H, Edwards P P, Mesoscience : exploring the common principle at mesoscales[J]. National Science Review, 2018, 5(3): 321-326. |
14 | Oren O, Taube R, Papo N. Amyloid β structural polymorphism, associated toxicity and therapeutic strategies[J]. Cellular and Molecular Life Sciences, 2021, 78(23): 7185-7198. |
15 | Economou N J, Giammona M J, Do T D, et al. Amyloid β-protein assembly and Alzheimer's disease: dodecamers of Aβ42, but not of Aβ40, seed fibril formation[J]. Journal of the American Chemical Society, 2016, 138(6): 1772-1775. |
16 | Upadhaya A R, Lungrin I, Yamaguchi H, et al. High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain[J]. Journal of Cellular and Molecular Medicine, 2012, 16(2): 287-295. |
17 | Lambert M P, Barlow A K, Chromy B A, et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins[J]. PNAS, 1998, 95(11): 6448-6453. |
18 | Lacor P N, Buniel M C, Chang L, et al. Synaptic targeting by Alzheimer's-related amyloid β oligomers[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2004, 24(45): 10191-10200. |
19 | Hoshi M, Sato M, Matsumoto S, et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate Tau protein kinase I/glycogen synthase kinase-3β[J]. PNAS, 2003, 100(11): 6370-6375. |
20 | Ohnishi T, Yanazawa M, Sasahara T, et al. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly[J]. PNAS, 2015, 112(32): E4465-E4474. |
21 | Komura H, Kakio S, Sasahara T, et al. Alzheimer Aβ assemblies accumulate in excitatory neurons upon proteasome inhibition and kill nearby NAKα3 neurons by secretion[J]. iScience, 2019, 13: 452-477. |
22 | Barghorn S, Nimmrich V, Striebinger A, et al. Globular amyloid β-peptide1-42 oligomer—a homogenous and stable neuropathological protein in Alzheimer's disease[J]. Journal of Neurochemistry, 2005, 95(3): 834-847. |
23 | Laurén J, Gimbel D A, Nygaard H B, et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers[J]. Nature, 2009, 457(7233): 1128-1132. |
24 | Nasica-Labouze J, Nguyen P H, Sterpone F, et al. Amyloid β protein and Alzheimer's disease: when computer simulations complement experimental studies[J]. Chemical Review, 2015, 115(9): 3518-3563. |
25 | Nagel-Steger L, Owen M C, Strodel B. An account of amyloid oligomers: facts and figures obtained from experiments and simulations[J]. ChemBioChem, 2016, 17(8): 657-676. |
26 | Kreutzer A G, Hamza I L, Spencer R K, et al. X-Ray crystallographic structures of a trimer, dodecamer, and annular pore formed by an Aβ17-36 β-hairpin[J]. Journal of the American Chemical Society, 2016, 138(13): 4634-4642. |
27 | Nguyen P H, Campanera J M, Ngo S T, et al. Tetrameric Aβ40 and Aβ42 β-barrel structures by extensive atomistic simulations (Ⅱ): In aqueous solution[J]. The Journal of Physical Chemistry B, 2019, 123(31): 6750-6756. |
28 | Kayed R, Head E, Thompson J L, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis[J]. Science, 2003, 300(5618): 486-489. |
29 | Morgado I, Wieligmann K, Bereza M, et al. Molecular basis of β-amyloid oligomer recognition with a conformational antibody fragment[J]. PNAS, 2012, 109(31): 12503-12508. |
30 | Pani I, Madhu P, Najiya N, et al. Differentiating conformationally distinct Alzheimer's amyloid-β oligomers using liquid crystals[J]. The Journal of Physical Chemistry Letters, 2020, 11(21): 9012-9018. |
31 | Lee S J, Nam E, Lee H J, et al. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors[J]. Chemical Society Review, 2017, 46(2): 310-323. |
32 | Ayala S, Genevaux P, Hureau C, et al. (Bio)chemical strategies to modulate amyloid-β self-assembly[J]. ACS Chemical Neuroscience, 2019, 10(8): 3366-3374. |
33 | Ehrnhoefer D E, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers[J]. Nature Structural & Molecular Biology, 2008, 15(6): 558-566. |
34 | Palhano F L, Lee J Y, Grimster N P, et al. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils[J]. Journal of the American Chemical Society, 2013, 135(20): 7503-7510. |
35 | Hyung S J, DeToma A S, Brender J R, et al. Insights into antiamyloidogenic properties of the green tea extract (–)-epigallocatechin-3-gallate toward metal-associated amyloid-β species[J]. PNAS, 2013, 110(10): 3743-3748. |
36 | Wang S H, Dong X Y, Sun Y. Thermodynamic analysis of the molecular interactions between amyloid β-protein fragments and (–)-epigallocatechin-3-gallate[J]. The Journal of Physical Chemistry. B, 2012, 116(20): 5803-5809. |
37 | Liu F F, Dong X Y, He L Z, et al. Molecular insight into conformational transition of amyloid β-peptide 42 inhibited by (–)-epigallocatechin-3-gallate probed by molecular simulations[J]. The Journal of Physical Chemistry. B, 2011, 115(41): 11879-11887. |
38 | Ahmed R, VanSchouwen B, Jafari N, et al. Molecular mechanism for the (–)-epigallocatechin gallate-induced toxic to nontoxic remodeling of Aβ oligomers[J]. Journal of the American Chemical Society, 2017, 139(39): 13720-13734. |
39 | Ren B P, Liu Y L, Zhang Y X, et al. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells[J]. Journal of Materials Chemistry. B, 2018, 6(1): 56-67. |
40 | Du W J, Guo J J, Gao M T, et al. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity[J]. Scientific Reports, 2015, 5: 7992. |
41 | Li M, Dong X Y, Liu Y, et al. Brazilin inhibits prostatic acidic phosphatase fibrillogenesis and decreases its cytotoxicity[J]. Chemistry - an Asian Journal, 2017, 12(10): 1062-1068. |
42 | Tu Y L, Ma S, Liu F F, et al. Hematoxylin inhibits amyloid β-protein fibrillation and alleviates amyloid-induced cytotoxicity[J]. The Journal of Physical Chemistry. B, 2016, 120(44): 11360-11368. |
43 | Goyal D, Shuaib S, Mann S, et al. Rationally designed peptides and peptidomimetics as inhibitors of amyloid-β (Aβ) aggregation: potential therapeutics of disease[J]. ACS Combinatorial Science, 2017, 19(2): 55-80. |
44 | Tjernberg L O, Näslund J, Lindqvist F, et al. Arrest of β-amyloid fibril formation by a pentapeptide ligand[J]. Journal of Biological Chemistry, 1996, 271(15): 8545-8548. |
45 | Soto C, Sigurdsson E M, Morelli L, et al. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy[J]. Nature Medicine, 1998, 4(7): 822-826. |
46 | Xiong N, Dong X Y, Zheng J, et al. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5650-5662. |
47 | Ma S, Zhang H, Dong X Y, et al. Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity[J]. Frontiers of Chemical Science and Engineering, 2018, 12(2): 283-295. |
48 | Zhang H, Zhang C, Dong X Y, et al. Design of nonapeptide LVFFARKHH: a bifunctional agent against Cu2+-mediated amyloid β-protein aggregation and cytotoxicity[J]. Journal of Molecular Recognition, 2018, 31(6): e2697. |
49 | Zhang H, Dong X Y, Sun Y. Carnosine-LVFFARK-NH2 conjugate: a moderate chelator but potent inhibitor of Cu2+-mediated amyloid β-protein aggregation[J]. ACS Chemical Neuroscience, 2018, 9(11): 2689-2700. |
50 | Meng J, Zhang H, Dong X Y, et al. RTHLVFFARK-NH2: a potent and selective modulator on Cu2+-mediated amyloid-β protein aggregation and cytotoxicity[J]. Journal of Inorganic Biochemistry, 2018, 181: 56-64. |
51 | Liu W, Dong X Y, Sun Y. D-enantiomeric RTHLVFFARK-NH2: a potent multifunctional decapeptide inhibiting Cu2+-mediated amyloid β-protein aggregation and remodeling Cu2+-mediated amyloid β aggregates[J]. ACS Chemical Neuroscience, 2019, 10(3): 1390-1401. |
52 | Xu S Y, Wang W J, Dong X Y, et al. Molecular insight into Cu2+-induced conformational transitions of amyloid β-protein from fast kinetic analysis and molecular dynamics simulations[J]. ACS Chemical Neuroscience, 2021, 12(2): 300-310. |
53 | Guo J, Yu L L, Sun Y, et al. Kinetic insights into Zn2+-induced amyloid β-protein aggregation revealed by stopped-flow fluorescence spectroscopy[J]. The Journal of Physical Chemistry. B, 2017, 121(16): 3909-3917. |
54 | Hureau C. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease (Ⅰ): An overview[J]. Coordination Chemistry Reviews, 2012, 256(19/20): 2164-2174. |
55 | Xie B L, Li X, Dong X Y, et al. Insight into the inhibition effect of acidulated serum albumin on amyloid β-protein fibrillogenesis and cytotoxicity[J]. Langmuir, 2014, 30(32): 9789-9796. |
56 | Xie B L, Liu F F, Dong X Y, et al. Modulation effect of acidulated human serum albumin on Cu2+-mediated amyloid β-protein aggregation and cytotoxicity under a mildly acidic condition[J]. Journal of Inorganic Biochemistry, 2017, 171: 67-75. |
57 | Xie B L, Dong X Y, Wang Y J, et al. Multifunctionality of acidulated serum albumin on inhibiting Zn2+-mediated amyloid β-protein fibrillogenesis and cytotoxicity[J]. Langmuir, 2015, 31(26): 7374-7380. |
58 | Xie B L, Zhang H, Li X, et al. Iminodiacetic acid-modified human serum albumin: a multifunctional agent against metal-associated amyloid β-protein aggregation and cytotoxicity[J]. ACS Chemical Neuroscience, 2017, 8(10): 2214-2224. |
59 | Wang W J, Dong X Y, Sun Y. Modification of serum albumin by high conversion of carboxyl to amino groups creates a potent inhibitor of amyloid β-protein fibrillogenesis[J]. Bioconjugate Chemistry, 2019, 30(5): 1477-1488. |
60 | Wang W J, Liu W, Xu S Y, et al. Design of multifunctional agent based on basified serum albumin for efficient in vivo β-amyloid inhibition and imaging[J]. ACS Applied Bio Materials, 2020, 3(5): 3365-3377. |
61 | Li X, Xie B L, Sun Y. Basified human lysozyme: a potent inhibitor against amyloid β-protein fibrillogenesis[J]. Langmuir, 2018, 34(50): 15569-15577. |
62 | Li X, Xie B L, Dong X Y, et al. Bifunctionality of iminodiacetic acid-modified lysozyme on inhibiting Zn2+-mediated amyloid β-protein aggregation[J]. Langmuir, 2018, 34(17): 5106-5115. |
63 | Li X, Wang W J, Dong X Y, et al. Conjugation of RTHLVFFARK to human lysozyme creates a potent multifunctional modulator for Cu2+-mediated amyloid β-protein aggregation and cytotoxicity[J]. Journal of Materials Chemistry. B, 2020, 8(11): 2256-2268. |
64 | Mukherjee S, Madamsetty V S, Bhattacharya D, et al. Recent advancements of nanomedicine in neurodegenerative disorders theranostics[J]. Advanced Functional Materials, 2020, 30(35): 2003054. |
65 | Ke P C, Pilkington E H, Sun Y X, et al. Mitigation of amyloidosis with nanomaterials[J]. Advanced Materials, 2020, 32(18): 1901690. |
66 | Feng L Y, Wang H P, Xue X. Recent progress of nanomedicine in the treatment of central nervous system diseases[J]. Advanced Therapeutic, 2020, 3(5): 1900159. |
67 | Wang Z Y, Tao S P, Dong X Y, et al. Para-sulfonatocalix[n]arenes inhibit amyloid β-peptide fibrillation and reduce amyloid cytotoxicity[J]. Chemistry - an Asian Journal, 2017, 12(3): 341-346. |
68 | Wang Z Y, Dong X Y, Sun Y. Hydrophobic modification of carboxyl-terminated polyamidoamine dendrimer surface creates a potent inhibitor of amyloid-β fibrillation[J]. Langmuir, 2018, 34(47): 14419-14427. |
69 | Liu H C, Xie B L, Dong X Y, et al. Negatively charged hydrophobic nanoparticles inhibit amyloid β-protein fibrillation: the presence of an optimal charge density[J]. Reactive and Functional Polymers, 2016, 103: 108-116. |
70 | Jiang Z Q, Dong X Y, Liu H, et al. Multifunctionality of self-assembled nanogels of curcumin-hyaluronic acid conjugates on inhibiting amyloid β-protein fibrillation and cytotoxicity[J]. Reactive and Functional Polymers, 2016, 104: 22-29. |
71 | Yang J N, Liu W, Sun Y, et al. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis[J]. Langmuir, 2020, 36(7): 1804-1812. |
72 | Xiong N, Zhao Y J, Dong X Y, et al. Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity[J]. Small, 2017, 13(13): 1601666. |
73 | Zhao G F, Dong X Y, Sun Y. Self-assembled curcumin-poly(carboxybetaine methacrylate) conjugates: potent nano-inhibitors against amyloid β-protein fibrillogenesis and cytotoxicity[J]. Langmuir, 2019, 35(5): 1846-1857. |
74 | Ren B P, Jiang B B, Hu R D, et al. HP-β-cyclodextrin as an inhibitor of amyloid-β aggregation and toxicity[J]. Physical Chemistry Chemical Physics, 2016, 18(30): 20476-20485. |
75 | Zhang H, Dong X Y, Liu F F, et al. Ac-LVFFARK-NH2 conjugation to β-cyclodextrin exhibits significantly enhanced performance on inhibiting amyloid β-protein fibrillogenesis and cytotoxicity[J]. Biophysical Chemistry, 2018, 235: 40-47. |
76 | Wang Z Y, Dong X Y, Sun Y. Mixed carboxyl and hydrophobic dendrimer surface inhibits amyloid-β fibrillation: new insight from the generation number effect[J]. Langmuir, 2019, 35(45): 14681-14687. |
77 | Zhao G F, Qi F J, Dong X Y, et al. LVFFARK conjugation to poly(carboxybetaine methacrylate) remarkably enhances its inhibitory potency on amyloid β-protein fibrillogenesis[J]. Reactive and Functional Polymers, 2019, 140: 72-81. |
78 | Wang W J, Zhao G F, Dong X Y, et al. Unexpected function of a heptapeptide-conjugated zwitterionic polymer that coassembles into β-amyloid fibrils and eliminates the amyloid cytotoxicity[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 18089-18099. |
79 | Gao W Q, Wang W J, Dong X Y, et al. Nitrogen-doped carbonized polymer dots: a potent scavenger and detector targeting β-amyloid plaques[J]. Small, 2020, 16(43): 2002804. |
80 | Liu W, Dong X Y, Liu Y, et al. Photoresponsive materials for intensified modulation of amyloid-β protein aggregation: a review[J]. Acta Biomaterialia, 2021, 123: 93-109. |
81 | Liu W, Wang W J, Dong X Y, et al. Near-infrared light-powered Janus nanomotor significantly facilitates inhibition of amyloid-β fibrillogenesis[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12618-12628. |
82 | Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease[J]. Nature, 2016, 537(7618): 50-56. |
[1] | Wenqi HOU, Yan SUN, Xiaoyan DONG. Basification modification of transthyretin significantly enhances inhibitory effect on amyloid-β protein aggregation [J]. CIESC Journal, 2023, 74(5): 2100-2110. |
[2] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[3] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[4] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
[5] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[6] | Min WANG, Jinlan CHENG, Xin LI, Jingjing LU, Chongxin YIN, Hongqi DAI. Delignification mechanism study of acid hydrotropes [J]. CIESC Journal, 2022, 73(5): 2206-2221. |
[7] | Hongxia CHEN, Linhan LI, Xiang GAO, Yiran WANG, Yuxiang GUO. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process [J]. CIESC Journal, 2022, 73(4): 1557-1565. |
[8] | Xiaoxi YU, Zhenzhen YAN, Qihui JIANG, Xia WU, Yuxiao ZHANG, Xiaojuan WANG, Fang HUANG. Study on the effect of 1-octyl-3-methylimidazole bromide aggregation state on protein crystallization [J]. CIESC Journal, 2021, 72(9): 4854-4860. |
[9] | CHEN Hongxia, LI Linhan, WANG Yiran, GUO Yuxiang, LIU Lin. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space [J]. CIESC Journal, 2021, 72(6): 3278-3287. |
[10] | Peng TIAN,Dewu WANG,Ruojin WANG,Meng TANG,Xiaolei HAO,Shaofeng ZHANG. Gas-solid flow characteristics in the rolling fluidized-bed [J]. CIESC Journal, 2021, 72(10): 5102-5113. |
[11] | Xinzhu MOU, Zhenqian CHEN. Effect of sludge thickness on characteristics of ultrasonic assisted hot air drying sludge [J]. CIESC Journal, 2020, 71(S2): 241-252. |
[12] | Yuquan ZHANG, Shuai GUO, Yuhua WENG, Yongfei YANG, Yuanyu HUANG. Progresses of aggregation-induced emission materials in drug delivery and disease treatment [J]. CIESC Journal, 2020, 71(9): 4102-4111. |
[13] | Xidong LIN, Youchen TANG, Quanfei SU, Shaohong LIU, Dingcai WU. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications [J]. CIESC Journal, 2020, 71(6): 2586-2598. |
[14] | Junkun TAN, Yudong LIU, Shichao GENG, Bing CHEN, Mingwei TONG. Test and numerical simulation of freezing and rewarming performance of vacuum probe [J]. CIESC Journal, 2020, 71(4): 1440-1449. |
[15] | Zuohua LIU, Chuang WANG, Wei SUN, Changyuan TAO, Yundong WANG. Chaotic mixing and droplet dispersion characteristics of liquid - liquid with elastic combined impeller [J]. CIESC Journal, 2020, 71(10): 4611-4620. |
|