CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2636-2648.DOI: 10.11949/0438-1157.20220158
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Tianqi TANG1,2(),Yurong HE1,2()
Received:
2022-02-07
Revised:
2022-05-08
Online:
2022-06-30
Published:
2022-06-05
Contact:
Yurong HE
通讯作者:
何玉荣
作者简介:
唐天琪(1993—),女,博士,讲师,基金资助:
CLC Number:
Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed[J]. CIESC Journal, 2022, 73(6): 2636-2648.
唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648.
变量 | 数值 | 单位 | 变量 | 数值 | 单位 |
---|---|---|---|---|---|
流化床 | 气体 | ||||
鼓泡床x、y、z方向尺寸 | 90×24×900 | mm | 气体密度 | 1.2 | kg/m3 |
鼓泡床x、y、z方向网格 | 10×3×90 | 气体速度 | 1.2 | m/s | |
颗粒 | 气体黏度 | 1.8×10-5 | Pa?s | ||
颗粒数量 | 16000 | 个 | 出口压力 | 101325 | Pa |
颗粒直径 | 3 | mm | 液体 | ||
颗粒密度 | 420 | kg/m3 | 相对液体量 | 0.01 | % |
恢复系数 | 0.97 | 液体密度 | 1000 | kg/m3 | |
颗粒间滑动摩擦系数 | 0.10 | 液体黏度 | 1.03 | mPa?s | |
颗粒壁面间滑动摩擦系数 | 0.30 | 接触角 | π/6 | rad | |
法向弹簧刚度 | 800 | N/m | 表面张力系数 | 0.0721 | N/m |
切向弹簧刚度 | 286 | N/m | 磁场 | ||
颗粒磁化率 | 0.642 | 磁场强度 | 0.005,0.010,0.020 | T |
Table 1 Parameters used in the simulation
变量 | 数值 | 单位 | 变量 | 数值 | 单位 |
---|---|---|---|---|---|
流化床 | 气体 | ||||
鼓泡床x、y、z方向尺寸 | 90×24×900 | mm | 气体密度 | 1.2 | kg/m3 |
鼓泡床x、y、z方向网格 | 10×3×90 | 气体速度 | 1.2 | m/s | |
颗粒 | 气体黏度 | 1.8×10-5 | Pa?s | ||
颗粒数量 | 16000 | 个 | 出口压力 | 101325 | Pa |
颗粒直径 | 3 | mm | 液体 | ||
颗粒密度 | 420 | kg/m3 | 相对液体量 | 0.01 | % |
恢复系数 | 0.97 | 液体密度 | 1000 | kg/m3 | |
颗粒间滑动摩擦系数 | 0.10 | 液体黏度 | 1.03 | mPa?s | |
颗粒壁面间滑动摩擦系数 | 0.30 | 接触角 | π/6 | rad | |
法向弹簧刚度 | 800 | N/m | 表面张力系数 | 0.0721 | N/m |
切向弹簧刚度 | 286 | N/m | 磁场 | ||
颗粒磁化率 | 0.642 | 磁场强度 | 0.005,0.010,0.020 | T |
Fig.10 Interaction among magnetic field force, contact force, drag force and liquid bridge force for the bubble structure evolution process under different magnetic field intensities in vertical direction
1 | Ali H, Plaza F, Mann A. Numerical prediction of dust capture efficiency of a centrifugal wet scrubber[J]. AIChE Journal, 2018, 64(3): 1001-1012. |
2 | Cui H P, Grace J R. Fluidization of biomass particles: a review of experimental multiphase flow aspects[J]. Chemical Engineering Science, 2007, 62(1/2): 45-55. |
3 | Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas-solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185. |
4 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, 44(3): 277-281. | |
5 | 王海峰. 气固流态化的多尺度非平衡特性研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. |
Wang H F. Multiscale nonequilibrium features of gas-solid fluidization[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2020. | |
6 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报,2021, 72(7): 3435-3444. |
Chu G W, Liao H G, Wang D, et al. Gas-liquid reaction process intensification at micro-/ nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
7 | Boyce C M, Ozel A, Kolehmainen J, et al. Growth and breakup of a wet agglomerate in a dry gas-solid fluidized bed[J]. AIChE Journal, 2017, 63(7): 2520-2527. |
8 | Zhao M, Liu D Y, Ma J L, et al. CFD-DEM simulation of gas-solid flow of wet particles in a fluidized bed with immersed tubes[J]. Chemical Engineering and Processing-Process Intensification, 2020, 156: 108098. |
9 | Song C X, Liu D Y, Ma J L, et al. CFD-DEM simulation of flow pattern and particle velocity in a fluidized bed with wet particles[J]. Powder Technology, 2017, 314: 346-354. |
10 | Liu P Y, Kellogg K M, LaMarche C Q, et al. Dynamics of singlet-doublet collisions of cohesive particles[J]. Chemical Engineering Journal, 2017, 324: 380-391. |
11 | Balakin B V, Shamsutdinova G, Kosinski P. Agglomeration of solid particles by liquid bridge flocculants: pragmatic modelling[J]. Chemical Engineering Science, 2015, 122: 173-181. |
12 | Cheng J N, Fan X Q, Sun J Y, et al. Evolution and fluidization behaviors of wet agglomerates based on formation-fragmentation competition mechanism[J]. Chemical Engineering Science, 2022, 247: 116933. |
13 | Wang H T, Soria Verdugo A, Sun J Y, et al. Experimental study of bubble dynamics and flow transition recognition in a fluidized bed with wet particles[J]. Chemical Engineering Science, 2020, 211: 115257. |
14 | van Willigen F K, van Ommen J R, van Turnhout J, et al. Bubble size reduction in a fluidized bed by electric fields[J]. International Journal of Chemical Reactor Engineering, 2003, 1(1): 21-36. |
15 | van Willigen F K, van Ommen J R, van Turnhout J, et al. Bubble size reduction in electric-field-enhanced fluidized beds[J]. Journal of Electrostatics, 2005, 63(6/7/8/9/10): 943-948. |
16 | Zhu C, Liu G L, Yu Q, et al. Sound assisted fluidization of nanoparticle agglomerates[J]. Powder Technology, 2004, 141(1/2): 119-123. |
17 | Zhu Q H, Li H Z, Zhu Q S, et al. Hydrodynamic study on magnetized fluidized beds with Geldart-B magnetizable particles[J]. Powder Technology, 2014, 268: 48-58. |
18 | Zhu Q H, Li H Z, Zhu Q S, et al. Hydrodynamic behavior of magnetized fluidized beds with admixtures of Geldart-B magnetizable and nonmagnetizable particles[J]. Particuology, 2016, 29: 86-94. |
19 | 李响. 外场作用下流化床中气固两相流动数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
Li X. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field[D]. Harbin: Harbin Institute of Technology, 2010. | |
20 | 杨慧, 万东玉, 曹长青. 磁-流场耦合气-固流化床气含率的模拟[J]. 石油化工, 2014, 43(1): 51-55. |
Yang H, Wan D Y, Cao C Q. Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields[J]. Petrochemical Technology, 2014, 43(1): 51-55. | |
21 | Espin M J, Quintanilla M A S, Valverde J M. Magnetic stabilization of fluidized beds: effect of magnetic field orientation[J]. Chemical Engineering Journal, 2017, 313: 1335-1345. |
22 | 毛志, 谭诗德, 柯春海, 等. 磁场对磁性湿颗粒运动机理的影响[J]. 重庆大学学报, 2018, 41(8): 17-25. |
Mao Z, Tan S D, Ke C H, et al. Influence of magnetic field on movement mechanism of wet magnetic particles[J]. Journal of Chongqing University, 2018, 41(8): 17-25. | |
23 | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
24 | Muguruma Y, Tanaka T, Tsuji Y. Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator)[J]. Powder Technology, 2000, 109(1-3): 49-57. |
25 | Goniva C, Kloss C, Deen N G, et al. Influence of rolling friction on single spout fluidized bed simulation[J]. Particuology, 2012, 10(5): 582-591. |
26 | Zhang D, Whiten W J. The calculation of contact forces between particles using spring and damping models[J]. Powder Technology, 1996, 88(1): 59-64. |
27 | Israelachvili J N. Intermolecular and Surface Forces [M]. 3rd ed. London: Academic Press, 2011. |
28 | Lambert P, Chau A, Delchambre A, et al. Comparison between two capillary forces models[J]. Langmuir, 2008, 24(7): 3157-3163. |
29 | Liu P Y, Yang R Y, Yu A B. Dynamics of wet particles in rotating drums: effect of liquid surface tension[J]. Physics of Fluids, 2011, 23(1): 013304. |
30 | Lian G P, Thornton C, Adams M J. Discrete particle simulation of agglomerate impact coalescence[J]. Chemical Engineering Science, 1998, 53(19): 3381-3391. |
31 | Goldman A J, Cox R G, Brenner H. Slow viscous motion of a sphere parallel to a plane wall(Ⅰ): Motion through a quiescent fluid[J]. Chemical Engineering Science, 1967, 22(4): 637-651. |
32 | Lian G, Adams M J, Thornton C. Elastohydrodynamic collisions of solid spheres[J]. Journal of Fluid Mechanics, 1996, 311: 141-152. |
33 | Pinto-Espinoza J. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): theory, experiment, and CFD-DPM simulation[D]. Corvallis: Oregon State University, 2003. |
34 | Beetstra R, van der Hoef M A, Kuipers J A M. Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501. |
35 | Jiang Z C, Rieck C, Bück A, et al. Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach[J]. Chemical Engineering Science, 2020, 211: 115289. |
36 | Zhang Y, Zhao Y M, Lu L Q, et al. Assessment of polydisperse drag models for the size segregation in a bubbling fluidized bed using discrete particle method[J]. Chemical Engineering Science, 2017, 160: 106-112. |
37 | Wang B, Tang T Q, Yan S N, et al. Magnetic segregation behaviors of a binary mixture in fluidized beds[J]. Powder Technology, 2022, 397: 117031. |
38 | Tang T Q, He Y R, Ren A X, et al. Experimental study and DEM numerical simulation of dry/wet particle flow behaviors in a spouted bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15353-15367. |
39 | Collier A P, Hayhurst A N, Richardson J L, et al. The heat transfer coefficient between a particle and a bed (packed or fluidised) of much larger particles[J]. Chemical Engineering Science, 2004, 59(21): 4613-4620. |
40 | 刘亚丕, 何时金, 包大新, 等. 软磁材料的发展趋势[J]. 磁性材料及器件, 2003, 34(3): 26-29, 32. |
Liu Y P, He S J, Bao D X, et al. Developing tendency of soft magnetic materials[J]. Journal of Magnetic Materials and Devices, 2003, 34(3): 26-29, 32. | |
41 | Jung J, Gidaspow D, Gamwo I K. Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds[J]. Industrial & Engineering Chemistry Research, 2005, 44(5): 1329-1341. |
[1] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[2] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
[3] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
[4] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[5] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[6] | Xing TIAN, Jiayue ZHANG, Zhigang GUO, Jian YANG, Qiuwang WANG. Flow and heat transfer characteristics of particles flowing along the plate with different mixing elements [J]. CIESC Journal, 2022, 73(11): 4884-4892. |
[7] | JIN Mo, LIU Daoyin, CHEN Xiaoping. Numerical simulation research of high-alkali coal ash deposition process based on discrete element method [J]. CIESC Journal, 2021, 72(4): 1939-1946. |
[8] | Feng GAO, Yongchang CHEN, Jinlong ZHAO, Chongfang MA. Influence of magnetic field on jet impingement heat transfer with molten salt [J]. CIESC Journal, 2020, 71(S2): 92-97. |
[9] | Yaqian WANG, Xiao LU, Bo PENG. Control of magnetic field to luminescence characteristics in (C4H9NH3)2(CH3NH3)Pb2I7 perovskite [J]. CIESC Journal, 2020, 71(6): 2912-2917. |
[10] | Dongqin LUO, Ning SUN, Qiuhong LI, Pengliang SUI, Qiuyan JIANG, Xiaofei SUI, Aixiang LI. Preparation and modulation of Pickering emulsion stabilized by non-covalent hydrophobic modified nanoparticles [J]. CIESC Journal, 2020, 71(4): 1859-1870. |
[11] | SONG Lichao,QIN Yan,LI Weizhong. Experimental study of frosting on different wettability surfaces under magnetic field [J]. CIESC Journal, 2020, 71(12): 5521-5529. |
[12] | Zhoutuo TAN,Zhigang GUO,Jian YANG,Qiuwang WANG. Numerical investigation on flow and heat transfer performance of gravity-driven granular flowing across inverted drop-shaped tube [J]. CIESC Journal, 2019, 70(S2): 94-100. |
[13] | Qiu ZHONG,Liping YANG,Ye TAO,Caiyun LUO,Zijun XU,Wenbing WANG. Experimental study on temperature signal difference under high intensity magnetic field [J]. CIESC Journal, 2019, 70(S2): 349-355. |
[14] | Zichao JIANG, Jianhua FANG, Zeqi JIANG, Xin WANG, Yanhan FENG, Jianhua DING. Tribological properties ofnano-WS2 lubricating oil additives under DC magnetic field [J]. CIESC Journal, 2019, 70(7): 2636-2644. |
[15] | LI Bin, ZHANG Shangbin, ZHANG Lei, TENG Zhaoyu, WANG Youtian. Numerical simulation of bubble-particle flow in bubbling bed based on LBM-DEM [J]. CIESC Journal, 2018, 69(9): 3843-3850. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 350
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||