CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2874-2884.DOI: 10.11949/0438-1157.20220297
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Chuyue CAI1(),Xiaoming FANG1,2,Zhengguo ZHANG1,2,3(),Ziye LING1,2
Received:
2022-03-02
Revised:
2022-04-24
Online:
2022-08-01
Published:
2022-07-05
Contact:
Zhengguo ZHANG
蔡楚玥1(),方晓明1,2,张正国1,2,3(),凌子夜1,2
通讯作者:
张正国
作者简介:
蔡楚玥(1997—),女,硕士研究生,基金资助:
CLC Number:
Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes[J]. CIESC Journal, 2022, 73(7): 2874-2884.
蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
Add to citation manager EndNote|Ris|BibTeX
样品 | w/% | Tm/℃ | Hm/(J/g) | Tf/℃ | Hf/(J/g) | η/% |
---|---|---|---|---|---|---|
PA | 100 | 49.0 | 199.1 | 52.4 | 198.7 | 100 |
PCTIM-1 | 5.0 | 51.8 | 8.5 | 53.0 | 7.8 | 4.1 |
PCTIM-2 | 7.5 | 51.0 | 12.9 | 52.2 | 12.1 | 6.3 |
PCTIM-3 | 10.0 | 51.0 | 17.7 | 52.6 | 17.1 | 8.8 |
PCTIM-4 | 12.5 | 50.5 | 23.7 | 53.2 | 23.2 | 11.8 |
PCTIM-5 | 15.0 | 50.1 | 26.6 | 52.8 | 25.8 | 13.2 |
Table 1 Phase change characteristics of phase change thermal pads containing different mass fractions of PA
样品 | w/% | Tm/℃ | Hm/(J/g) | Tf/℃ | Hf/(J/g) | η/% |
---|---|---|---|---|---|---|
PA | 100 | 49.0 | 199.1 | 52.4 | 198.7 | 100 |
PCTIM-1 | 5.0 | 51.8 | 8.5 | 53.0 | 7.8 | 4.1 |
PCTIM-2 | 7.5 | 51.0 | 12.9 | 52.2 | 12.1 | 6.3 |
PCTIM-3 | 10.0 | 51.0 | 17.7 | 52.6 | 17.1 | 8.8 |
PCTIM-4 | 12.5 | 50.5 | 23.7 | 53.2 | 23.2 | 11.8 |
PCTIM-5 | 15.0 | 50.1 | 26.6 | 52.8 | 25.8 | 13.2 |
功率/W | T空载/℃ | TTIM/℃ | TPCTIM/℃ | ΔT/℃ |
---|---|---|---|---|
100 | 141.0 | 130.6 | 129.5 | 1.1 |
30 | 109.1 | 98.2 | 96.5 | 1.7 |
20 | 81.4 | 71.9 | 69.8 | 2.1 |
10 | 57.0 | 48.7 | 45.2 | 3.5 |
Table 2 Equilibrium temperatures of the simulative chip when employing no TIM and different TIMs at different heating power
功率/W | T空载/℃ | TTIM/℃ | TPCTIM/℃ | ΔT/℃ |
---|---|---|---|---|
100 | 141.0 | 130.6 | 129.5 | 1.1 |
30 | 109.1 | 98.2 | 96.5 | 1.7 |
20 | 81.4 | 71.9 | 69.8 | 2.1 |
10 | 57.0 | 48.7 | 45.2 | 3.5 |
性能参数 | TIM-6 | PCTIM-4 |
---|---|---|
热导率/(W/(m·K)) | 0.71 | 0.71 |
厚度/mm | 0.98 | 0.98 |
硬度/HA | 47.5 | 34.7 |
热阻/(K·cm2/W) | 19.1483 | 15.2650 |
Table 3 Characteristics of TIM-6 and PCTIM-4
性能参数 | TIM-6 | PCTIM-4 |
---|---|---|
热导率/(W/(m·K)) | 0.71 | 0.71 |
厚度/mm | 0.98 | 0.98 |
硬度/HA | 47.5 | 34.7 |
热阻/(K·cm2/W) | 19.1483 | 15.2650 |
1 | 刘长青, 陈茂, 于伟. 热界面材料的研究进展[J]. 中国基础科学, 2018, 20(3): 13-27, 64. |
Liu C Q, Chen M, Yu W. Progress in the research of thermal interface materials[J]. China Basic Science, 2018, 20(3): 13-27, 64. | |
2 | 高丽娜, 赵领. 温度应力下基于步进加速退化试验的电子器件寿命预测[J]. 电子元件与材料, 2014, 33(6): 72-76. |
Gao L N, Zhao L. Life prediction of electronic equipments based on step-stress accelerated degradation test under temperature stress[J]. Electronic Components and Materials, 2014, 33(6): 72-76. | |
3 | 汪琦玮. 热界面材料的界面热阻问题研究[D]. 武汉: 华中科技大学, 2019. |
Wang Q W. Study on the interfacial thermal resistance of thermal interface materials[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
4 | 侯思雨, 闫焕焕, 任芳, 等. 高分子复合材料导热性能的研究进展[J]. 合成材料老化与应用, 2020, 49(6): 135-138, 83. |
Hou S Y, Yan H H, Ren F, et al. Research progress on thermal conducting polymer composites[J]. Synthetic Materials Aging and Application, 2020, 49(6): 135-138, 83. | |
5 | Liu C Q, Chen C, Yu W, et al. Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3 [J]. International Journal of Thermal Sciences, 2020, 152: 106293. |
6 | Mao D S, Chen J H, Ren L L, et al. Spherical core-shell Al@Al2O3 filled epoxy resin composites as high-performance thermal interface materials[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 260-269. |
7 | Barshutina M N, Volkov V S, Arsenin A V, et al. Silicone composites with CNT/graphene hybrid fillers: a review[J]. Materials (Basel, Switzerland), 2021, 14(9): 2418. |
8 | Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502. |
9 | 桑亚非, 赫玉欣, 张丽, 等. 长链硅烷偶联剂对多壁碳纳米管表面改性研究[J]. 化工新型材料, 2017, 45(3): 69-71. |
Sang Y F, He Y X, Zhang L, et al. Long chain silane coupling agent used for surface modification of multi-walled carbon nanotubes[J]. New Chemical Materials, 2017, 45(3): 69-71. | |
10 | Li M, Chen M R, Wu Z S, et al. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material[J]. Energy Conversion and Management, 2014, 83: 325-329. |
11 | Li M, Guo Q G, Chen Q W. Thermal conductivity improvement of heat-storage composite filled with milling modified carbon nanotubes[J]. International Journal of Green Energy, 2019, 16(15): 1617-1623. |
12 | Ganguli S, Roy A K, Wheeler R, et al. Superior thermal interface via vertically aligned carbon nanotubes grown on graphite foils[J]. Journal of Materials Research, 2013, 28(7): 933-939. |
13 | Huang H, Liu C , Wu Y, et al. Aligned carbon nanotube composite films for thermal management[J]. Advanced Materials, 2005, 17(13): 1652-1656. |
14 | Yu H T, Feng Y Y, Chen C, et al. Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material[J]. Carbon, 2021, 179: 348-357. |
15 | Peacock M A, Roy C K, Hamilton M C, et al. Characterization of transferred vertically aligned carbon nanotubes arrays as thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2016, 97: 94-100. |
16 | Sakamoto H, Fujiwara I, Takamura E, et al. Nanofiber-guided orientation of electrospun carbon nanotubes and fabrication of aligned CNT electrodes for biodevice applications[J]. Materials Chemistry and Physics, 2020, 245: 122745. |
17 | Wu G, Zhan H, Shi Q Q, et al. Full on-line preparation of polymer composites reinforced with aligned carbon nanotubes[J]. Composites Science and Technology, 2020, 200: 108472. |
18 | Sharma A, Tripathi B, Vijay Y K. Dramatic improvement in properties of magnetically aligned CNT/polymer nanocomposites[J]. Journal of Membrane Science, 2010, 361(1/2): 89-95. |
19 | Haibat J, Ceneviva S, Spencer M P, et al. Preliminary demonstration of energy-efficient fabrication of aligned CNT-polymer nanocomposites using magnetic fields[J]. Composites Science and Technology, 2017, 152: 27-35. |
20 | Liu Z R, Chung D D L. Boron nitride particle filled paraffin wax as a phase-change thermal interface material[J]. Journal of Electronic Packaging, 2006, 128(4): 319-323. |
21 | 仝兴存, 安兵, 吕卫文, 等. 电子封装热管理先进材料[M]. 北京:国防工业出版社, 2016. |
Tong X C, An B, Lyu W W, et al. Advanced Materials for Thermal Management of Electronic Packaging[M]. Beijing: National Defense Industry Press, 2016. | |
22 | 邓志军, 万炜涛, 陈田安. 一种橡胶改性的相变导热界面材料及制备方法: 105441034A[P]. 2019-07-26. |
Deng Z J, Wan W T, Chen T A. Rubber modified phase change heat conduction interface material and preparation method: 105441034A[P]. 2019-07-26. | |
23 | 史剑, 吴晓琳, 符显珠, 等. 复合相变垫片研究进展[J]. 材料导报, 2015, 29(1): 151-156. |
Shi J, Wu X L, Fu X Z, et al. Research progress of phase change thermal interface materials[J]. Materials Review, 2015, 29(1): 151-156. | |
24 | Aoyagi Y, Leong C K, Chung D D L. Polyol-based phase-change thermal interface materials[J]. Journal of Electronic Materials, 2006, 35(3): 416-424. |
25 | Lee S Y, Singh P, Mahajan R L. Role of oxygen functional groups for improved performance of graphene-silicone composites as a thermal interface material[J]. Carbon, 2019, 145: 131-139. |
26 | Feng J, Liu Z J, Zhang D Q, et al. Phase change materials coated with modified graphene-oxide as fillers for silicone rubber used in thermal interface applications[J]. New Carbon Materials, 2019, 34(2): 188-195. |
27 | Feng C P, Yang L Y, Yang J, et al. Recent advances in polymer-based thermal interface materials for thermal management: a mini-review[J]. Composites Communications, 2020, 22: 100528. |
28 | Zhang Y F, Li W, Huang J H, et al. Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials[J]. Materials (Basel, Switzerland), 2020, 13(4): 894. |
29 | 李庆威. 碳纳米管热传导研究[D]. 北京: 清华大学, 2010. |
Li Q W. Studies on thermal conductance of carbon nanotubes[D]. Beijing: Tsinghua University, 2010. | |
30 | Feng Y, Zhu J, Tang D W. Dependence of carbon nanotube array-silicon interface thermal conductance on array arrangement and filling fraction[J]. Applied Thermal Engineering, 2018, 145: 667-673. |
31 | Feng Y, Zhu J, Tang D W. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon[J]. AIP Advances, 2014, 4(12): 127118. |
32 | Zhou W X, Cheng Y, Chen K Q, et al. Thermal conductivity of amorphous materials[J]. Advanced Functional Materials, 2020, 30(8): 1903829. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[9] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[10] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[14] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[15] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||