CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2885-2894.DOI: 10.11949/0438-1157.20211747
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2021-12-10
Revised:
2022-03-21
Online:
2022-08-01
Published:
2022-07-05
Contact:
Pei WANG
通讯作者:
王沛
作者简介:
王沛(1986—),男,博士,教授,基金资助:
CLC Number:
Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide[J]. CIESC Journal, 2022, 73(7): 2885-2894.
王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
多孔床(氧化铈) | |
床层孔隙率φ/孔径dp | 0.8/2 mm |
氧化铈密度 | |
晶格常数a* | 0.54112 nm |
晶格氧扩散系数 | |
表面摩尔密度 | |
体积摩尔密度 | |
颗粒表面积 | 3.14 |
比表面积αsf[ | |
反应床厚度L | 21.6 mm/50 mm |
多孔体积密度 | |
动力学参数[ | |
反应式(9)正反应活化能 | -7 kJ/mol |
反应式(9)逆反应活化能 | -230 kJ/mol |
反应式(10)正反应活化能 | -190 kJ/mol |
反应式(10)逆反应活化能 | -102 kJ/mol |
反应式(9)正反应动力学参数 | 130 |
反应式(9)逆反应动力学参数 | |
反应式(10)正反应动力学参数 | |
反应式(10)逆反应动力学参数 | |
CeO2体积缺陷平衡反应摩尔焓 | -113.7 J/mol |
CeO2体积缺陷平衡反应摩尔熵 | -42.1 J/(mol·K) |
实验参数 | |
还原气浓度 | |
氧化气浓度 | |
进气压力 | |
进气流量 | 0.2 g/s |
进气黏度 | |
进气密度 | |
进气温度 | 100℃ |
床层温度 | 恒温1000℃/ 辐射热通量1 MW/m2 |
H2初始摩尔分数 | 0.1/0.143/0.2/0.3/0.4/0.5/0.6 |
H2O初始摩尔分数 | 0.1/0.2/0.26/0.3/0.4 |
Table 1 Values of some model variable parameters
参数 | 数值 |
---|---|
多孔床(氧化铈) | |
床层孔隙率φ/孔径dp | 0.8/2 mm |
氧化铈密度 | |
晶格常数a* | 0.54112 nm |
晶格氧扩散系数 | |
表面摩尔密度 | |
体积摩尔密度 | |
颗粒表面积 | 3.14 |
比表面积αsf[ | |
反应床厚度L | 21.6 mm/50 mm |
多孔体积密度 | |
动力学参数[ | |
反应式(9)正反应活化能 | -7 kJ/mol |
反应式(9)逆反应活化能 | -230 kJ/mol |
反应式(10)正反应活化能 | -190 kJ/mol |
反应式(10)逆反应活化能 | -102 kJ/mol |
反应式(9)正反应动力学参数 | 130 |
反应式(9)逆反应动力学参数 | |
反应式(10)正反应动力学参数 | |
反应式(10)逆反应动力学参数 | |
CeO2体积缺陷平衡反应摩尔焓 | -113.7 J/mol |
CeO2体积缺陷平衡反应摩尔熵 | -42.1 J/(mol·K) |
实验参数 | |
还原气浓度 | |
氧化气浓度 | |
进气压力 | |
进气流量 | 0.2 g/s |
进气黏度 | |
进气密度 | |
进气温度 | 100℃ |
床层温度 | 恒温1000℃/ 辐射热通量1 MW/m2 |
H2初始摩尔分数 | 0.1/0.143/0.2/0.3/0.4/0.5/0.6 |
H2O初始摩尔分数 | 0.1/0.2/0.26/0.3/0.4 |
1 | Roeb M, Müller-Steinhagen H. Concentrating on solar electricity and fuels[J]. Science, 2010, 329(5993): 773-774. |
2 | Bayon A, de la Calle A, Ghose K K, et al. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: a review[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12653-12679. |
3 | Pereira C A, Coelho P M, Fernandes J F, et al. Study of an energy mix for the production of hydrogen[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1375-1382. |
4 | Yadav D, Banerjee R. A review of solar thermochemical processes[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 497-532. |
5 | Zhang B, Zhang S X, Yao R, et al. Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of Electronic Science and Technology, 2021, 19(2): 100080. |
6 | Voitic G, Hacker V. Recent advancements in chemical looping water splitting for the production of hydrogen[J]. RSC Advances, 2016, 6(100): 98267-98296. |
7 | Luo M, Yi Y, Wang S Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214. |
8 | Protasova L, Snijkers F. Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes[J]. Fuel, 2016, 181: 75-93. |
9 | Agrafiotis C, Roeb M, Sattler C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 254-285. |
10 | Krenzke P T, Fosheim J R, Davidson J H. Solar fuels via chemical-looping reforming[J]. Solar Energy, 2017, 156: 48-72. |
11 | Furler P, Scheffe J R, Steinfeld A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor[J]. Energy Environ. Sci., 2012, 5(3): 6098-6103. |
12 | Furler P, Scheffe J, Gorbar M, et al. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system[J]. Energy & Fuels, 2012, 26(11): 7051-7059. |
13 | Haeussler A, Abanades S, Costa Oliveira F A, et al. Solar redox cycling of ceria structures based on fiber boards, foams, and biomimetic cork-derived ecoceramics for two-step thermochemical H2O and CO2 splitting[J]. Energy & Fuels, 2020, 34(7): 9037-9049. |
14 | Venstrom L J, Petkovich N, Rudisill S, et al. The effects of morphology on the oxidation of ceria by water and carbon dioxide[J]. Journal of Solar Energy Engineering, 2012, 134(1): 011005. |
15 | Shen Y, Zhao K, He F, et al. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1168-1176. |
16 | Panlener R J, Blumenthal R N, Garnier J E. A thermodynamic study of nonstoichiometric cerium dioxide[J]. Journal of Physics and Chemistry of Solids, 1975, 36(11): 1213-1222. |
17 | Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129(1/2/3/4): 63-94. |
18 | Chueh W C, Haile S M. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1923): 3269-3294. |
19 | Zhu X, Wang H, Wei Y G, et al. Hydrogen and syngas production from two-step steam reforming of methane over CeO2-Fe2O3 oxygen carrier[J]. Journal of Rare Earths, 2010, 28(6): 907-913. |
20 | Hao Y, Yang C K, Haile S M. Ceria-zirconia solid solutions (Ce1- x Zr x O2- δ, x ≤ 0.2) for solar thermochemical water splitting: a thermodynamic study[J]. Chemistry of Materials, 2014, 26(20): 6073-6082. |
21 | Venstrom L J, de Smith R M, Hao Y, et al. Efficient splitting of CO2 in an isothermal redox cycle based on ceria[J]. Energy & Fuels, 2014, 28(4): 2732-2742. |
22 | Bulfin B, Lowe A J, Keogh K A, et al. Analytical model of CeO2 oxidation and reduction[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24129-24137. |
23 | Sheu E J, Mokheimer E M A, Ghoniem A F. A review of solar methane reforming systems[J]. International Journal of Hydrogen Energy, 2015, 40(38): 12929-12955. |
24 | Lyu Y J, Zhu L Y, Agrafiotis C, et al. Solar fuels production: two-step thermochemical cycles with cerium-based oxides[J]. Progress in Energy and Combustion Science, 2019, 75: 100785. |
25 | Furler P, Steinfeld A. Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling[J]. Chemical Engineering Science, 2015, 137: 373-383. |
26 | Patil V R, Kiener F, Grylka A, et al. Experimental testing of a solar air cavity-receiver with reticulated porous ceramic absorbers for thermal processing at above 1000℃[J]. Solar Energy, 2021, 214: 72-85. |
27 | Zoller S, Koepf E, Roos P, et al. Heat transfer model of a 50 kW solar receiver-reactor for thermochemical redox cycling using cerium dioxide[J]. Journal of Solar Energy Engineering, 2019, 141(2): 021014. |
28 | Wang P, Vafai K, Liu D Y. Analysis of radiative effect under local thermal non-equilibrium conditions in porous media—application to a solar air receiver[J]. Numerical Heat Transfer, Part A: Applications, 2014, 65(10): 931-948. |
29 | Zhao Z L, Uddi M, Tsvetkov N, et al. Redox kinetics study of fuel reduced ceria for chemical-looping water splitting[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16271-16289. |
30 | Ackermann S, Scheffe J R, Steinfeld A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles[J]. The Journal of Physical Chemistry C, 2014, 118(10): 5216-5225. |
31 | Wang P, Vafai K, Liu D Y, et al. Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed[J]. International Journal of Heat and Mass Transfer, 2015, 80: 789-801. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[3] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[4] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[5] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[6] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[7] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[8] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[9] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[10] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[11] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
[12] | Xingang QI, Libo LU, Yunan CHEN, Zhiwei GE, Liejin GUO. Review of black liquor supercritical water gasification for hydrogen production with high value-added chemicals recovery [J]. CIESC Journal, 2022, 73(8): 3338-3354. |
[13] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
[14] | Xiaoya LIU, Jinchao WANG, Ying LIU, Jinghuan MA. Progress in modified preparation and catalytic mechanism of nanocatalysts for hydrogen production from hydrous hydrazine [J]. CIESC Journal, 2022, 73(7): 2819-2834. |
[15] | Wei LIU, Yan SUN. Research progress on amyloid β-protein aggregation and its regulation [J]. CIESC Journal, 2022, 73(6): 2381-2396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||