CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3851-3860.DOI: 10.11949/0438-1157.20220512
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xuemei LANG1,3(), Liumei YAO1, Shuanshi FAN1, Gang LI1, Yanhong WANG1,2(
)
Received:
2022-04-08
Revised:
2022-06-13
Online:
2022-10-09
Published:
2022-09-05
Contact:
Yanhong WANG
郎雪梅1,3(), 姚柳眉1, 樊栓狮1, 李刚1, 王燕鸿1,2(
)
通讯作者:
王燕鸿
作者简介:
郎雪梅(1968—),女,博士,副研究员,cexmlang@scut.edu.cn
基金资助:
CLC Number:
Xuemei LANG, Liumei YAO, Shuanshi FAN, Gang LI, Yanhong WANG. Numerical simulation of methane hydrate formation and heat transfer in porous materials[J]. CIESC Journal, 2022, 73(9): 3851-3860.
郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860.
编号 | 多孔材料 种类 | 工作压力/MPa | 壁面 温度/K | 孔隙率 | 热导率/ (W/(m·K)) |
---|---|---|---|---|---|
① | 聚氨酯泡沫PU | 7.70 | 273.15 | 0.9778 | 0.039 |
② | 泡沫铝AF | 8.39 | 273.15 | 0.7278 | 237.00 |
Table 1 Operating parameters of the simulation
编号 | 多孔材料 种类 | 工作压力/MPa | 壁面 温度/K | 孔隙率 | 热导率/ (W/(m·K)) |
---|---|---|---|---|---|
① | 聚氨酯泡沫PU | 7.70 | 273.15 | 0.9778 | 0.039 |
② | 泡沫铝AF | 8.39 | 273.15 | 0.7278 | 237.00 |
1 | Exxonmobil. The outlook for energy: a view to 2040[R]. the United States: ExxonMobil, 2014. |
2 | He T B, Chong Z R, Zheng J J, et al. LNG cold energy utilization: prospects and challenges[J]. Energy, 2019, 170: 557-568. |
3 | 朱琳琳, 皇甫立霞, 郭开华. 液化天然气航运安全标准的现状及最新进展[J]. 化工学报, 2018, 69(S2): 1-8. |
Zhu L L, Huangfu L X, Guo K H, et al. Current status and recent progress of LNG navigation safety standards[J]. CIESC Journal, 2018, 69(S2): 1-8. | |
4 | Veluswamy H P, Wong A J H, Babu P, et al. Rapid methane hydrate formation to develop a cost effective large scale energy storage system[J]. Chemical Engineering Journal, 2016, 290: 161-173. |
5 | Fan S S, Wang Y, Wang Y H, et al. Design and optimization of offshore ship-based natural gas storage technologies in the South China Sea[J]. Energy Conversion and Management, 2021, 239: 114218. |
6 | 郎雪梅, 樊栓狮, 王燕鸿, 等. 笼型水合物为能源化工带来新机遇[J]. 化工进展, 2021, 40(9): 4703-4710. |
Lang X M, Fan S S, Wang Y H, et al. Opportunities for energy and chemical engineering through clathrate hydrates[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4703-4710. | |
7 | Deng Z X, Wang Y H, Yu C, et al. Promoting methane hydrate formation with expanded graphite additives: application to solidified natural gas storage[J]. Fuel, 2021, 299: 120867. |
8 | 裴俊华, 杨亮, 汪鑫, 等. 泡沫铜强化甲烷水合物生成动力学实验研究[J]. 化工学报, 2021, 72(11): 5751-5760. |
Pei J H, Yang L, Wang X, et al. Experimental study on kinetics of methane hydrate formation enhanced by copper foam[J]. CIESC Journal, 2021, 72(11): 5751-5760. | |
9 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases [M]. Florida: CRC Press, 2007. |
10 | Xie Y, Zheng T, Zhong J R, et al. Experimental research on self-preservation effect of methane hydrate in porous sediments[J]. Applied Energy, 2020, 268: 115008. |
11 | Wang S L, Xu J, Fan S S, et al. Atmospheric preservation of CH4 hydrate above ice point: a potential application for high-density natural gas storage under moderate conditions[J]. Fuel, 2021, 293: 120482. |
12 | Bhattacharjee G, Veluswamy H P, Kumar A, et al. Stability analysis of methane hydrates for gas storage application[J]. Chemical Engineering Journal, 2021, 415: 128927. |
13 | Kanda H. Economic study on natural gas transportation with natural gas hydrate (NGH) pellets[J]. International Gas Union World Gas Conference Papers, 2006, 4: 1990-2000. |
14 | Ke W, Svartaas T M, Chen D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 169-196. |
15 | Fan S S, Yang L, Lang X M, et al. Kinetics and thermal analysis of methane hydrate formation in aluminum foam[J]. Chemical Engineering Science, 2012, 82: 185-193. |
16 | 黄怡. 碳纳米管、聚氨酯泡沫和新型干水对甲烷水合物生成的强化作用[D]. 广州: 华南理工大学, 2016. |
Huang Y. Effects of MWCNT, PU foam and new dry water on methane hydrate formation[D]. Guangzhou: South China University of Technology, 2016. | |
17 | Esmaeilzadeh F, Zeighami M E, Kaljahi J F. 1-D mathematical modeling of hydrate decomposition in porous media by depressurization and thermal stimulation[J]. Journal of Porous Media, 2011, 14(1): 1-16. |
18 | Li P, Zhang X H, Lu X B. Three-dimensional Eulerian modeling of gas-liquid-solid flow with gas hydrate dissociation in a vertical pipe[J]. Chemical Engineering Science, 2019, 196: 145-165. |
19 | Song G C, Li Y X, Wang W C, et al. Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 32-43. |
20 | Neto E T. A mechanistic computational fluid dynamic CFD model to predict hydrate formation in offshore pipelines[C]//SPE Annual Technical Conference and Exhibition. Dubai, UAE: SPE, 2016: 184491. |
21 | Song R, Sun S Y, Liu J J, et al. Numerical modeling on hydrate formation and evaluating the influencing factors of its heterogeneity in core-scale sandy sediment[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103945. |
22 | Chou I M, Sharma A, Burruss R C, et al. Transformations in methane hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13484-13487. |
23 | Kumar A, Veluswamy H P, Linga P, et al. Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: implications to energy storage[J]. Fuel, 2019, 236: 1505-1511. |
24 | Vysniauskas A, Bishnoi P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7): 1061-1072. |
25 | 郝天翔. 应用FLUENT数值模拟天然气水合物开采过程[D]. 长春: 吉林大学, 2015. |
Hao T X. Numerical simulation of exploiting gas hydrate processes based on FLUENT software[D]. Changchun: Jilin University, 2015. | |
26 | Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): RG4003. |
27 | Yin Z Y, Khurana M, Tan H K, et al. A review of gas hydrate growth kinetic models[J]. Chemical Engineering Journal, 2018, 342: 9-29. |
28 | Fluent A. ANSYS FLUENT 14.5 Theory Guide[M]. The United States: Canonsburg, 2012. |
29 | 孙长宇, 陈光进, 郭天民, 等. 甲烷水合物分解动力学[J]. 化工学报, 2002, 53(9): 899-903. |
Sun C Y, Chen G J, Guo T M, et al. Kinetics of methane hydrate decomposition[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(9): 899-903. | |
30 | 辛亚男, 张建文, 张淑珍, 等. 螺旋内槽管内天然气-水-表面活性剂体系的水合物生成动力学计算[J]. 化工学报, 2018, 69(6): 2463-2473. |
Xin Y N, Zhang J W, Zhang S Z, et al. Modelling hydrate formation kinetics of natural gas-water-surfactant system in internal spiral-grooved tube[J]. CIESC Journal, 2018, 69(6): 2463-2473. | |
31 | Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. |
32 | Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. |
33 | Sun X F, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science, 2006, 61(11): 3476-3495. |
34 | Amyx J W, Bass D, Whiting R. Petroleum Reservoir Engineering: Physical Properties[M]. New York: McGraw-Hill, 1960. |
35 | Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B10): 2508. |
36 | Hinz D. A 4-phase flow model for methane production from an unconsolidated hydrate reservoir[D]. Illinois: Illinois Institute of Technology, 2019. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||