CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4217-4225.DOI: 10.11949/0438-1157.20220742
• Process safety • Previous Articles Next Articles
Feng LIU1(), Quan WANG1, Panyu WU1,2, Guo WEI1,2, Xiang HE1
Received:
2022-05-24
Revised:
2022-06-20
Online:
2022-10-09
Published:
2022-09-05
Contact:
Feng LIU
刘锋1(), 汪全1, 吴攀宇1,2, 魏国1,2, 何祥1
通讯作者:
刘锋
作者简介:
刘锋(1975—),男,博士,副教授,hyli@aust.edu.cn
基金资助:
CLC Number:
Feng LIU, Quan WANG, Panyu WU, Guo WEI, Xiang HE. Effect of internal phase particle size on vibration resistance of on-site mixed emulsion explosive matrix[J]. CIESC Journal, 2022, 73(9): 4217-4225.
刘锋, 汪全, 吴攀宇, 魏国, 何祥. 内相粒径对现场混装乳化炸药基质抗振动性能的影响[J]. 化工学报, 2022, 73(9): 4217-4225.
组成 | 质量分数/% |
---|---|
硝酸铵 | 72.5 |
硝酸钠 | 4.0 |
复合蜡 | 1.5 |
0#柴油 | 4.0 |
H2O | 16.0 |
Span-80 | 2.0 |
Table 1 Formulation of on-site mixed emulsion explosive matrix
组成 | 质量分数/% |
---|---|
硝酸铵 | 72.5 |
硝酸钠 | 4.0 |
复合蜡 | 1.5 |
0#柴油 | 4.0 |
H2O | 16.0 |
Span-80 | 2.0 |
编号 | 转速/ (r·min-1) | D1/μm | 粒径分布 范围ΔL/μm | PDI | D2/μm | 粒径分布 范围ΔL/μm | PDI | D3/μm | 粒径分布 范围ΔL/μm | PDI | D4/μm | 粒径分布 范围ΔL /μm | PDI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | 600 | 9.47 | 3.80~30.20 | 2.78 | — | — | — | — | — | — | — | — | — |
2# | 800 | 9.01 | 3.31~26.30 | 2.59 | 15.95 | 5.01~60.26 | 3.21 | — | — | — | — | — | — |
3# | 1000 | 7.41 | 2.88~19.95 | 2.30 | 8.89 | 3.31~26.30 | 2.59 | 13.53 | 4.37~45.71 | 3.05 | — | — | — |
4# | 1200 | 4.97 | 1.91~11.48 | 1.93 | 7.81 | 2.88~22.91 | 2.56 | 10.84 | 4.37~34.67 | 2.80 | 13.89 | 4.37~45.71 | 3.06 |
5# | 1400 | 3.97 | 1.25~8.71 | 1.88 | 5.69 | 2.18~13.18 | 1.95 | 6.43 | 2.51~15.31 | 1.96 | 6.81 | 2.51~17.38 | 2.18 |
Table 2 Test results of internal phase particle size of on-site mixed emulsion explosive matrix
编号 | 转速/ (r·min-1) | D1/μm | 粒径分布 范围ΔL/μm | PDI | D2/μm | 粒径分布 范围ΔL/μm | PDI | D3/μm | 粒径分布 范围ΔL/μm | PDI | D4/μm | 粒径分布 范围ΔL /μm | PDI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | 600 | 9.47 | 3.80~30.20 | 2.78 | — | — | — | — | — | — | — | — | — |
2# | 800 | 9.01 | 3.31~26.30 | 2.59 | 15.95 | 5.01~60.26 | 3.21 | — | — | — | — | — | — |
3# | 1000 | 7.41 | 2.88~19.95 | 2.30 | 8.89 | 3.31~26.30 | 2.59 | 13.53 | 4.37~45.71 | 3.05 | — | — | — |
4# | 1200 | 4.97 | 1.91~11.48 | 1.93 | 7.81 | 2.88~22.91 | 2.56 | 10.84 | 4.37~34.67 | 2.80 | 13.89 | 4.37~45.71 | 3.06 |
5# | 1400 | 3.97 | 1.25~8.71 | 1.88 | 5.69 | 2.18~13.18 | 1.95 | 6.43 | 2.51~15.31 | 1.96 | 6.81 | 2.51~17.38 | 2.18 |
编号 | 平均粒径D[3,2]/μm | 振动 时间/h | 消耗氢氧化钠溶液平均体积 | 硝酸铵 析出量M/g |
---|---|---|---|---|
1# | 9.47 | 0 | 6.35 | 0.36594 |
— | 24 | 8.43 | 0.48552 | |
— | 48 | 10.25 | 0.59070 | |
— | 72 | 15.46 | 0.89094 | |
2# | 9.01 | 0 | 4.63 | 0.26653 |
15.95 | 24 | 5.53 | 0.31840 | |
— | 48 | 6.48 | 0.37315 | |
— | 72 | 9.25 | 0.53307 | |
3# | 7.41 | 0 | 3.05 | 0.17577 |
8.89 | 24 | 3.34 | 0.19248 | |
13.53 | 48 | 4.64 | 0.26711 | |
— | 72 | 7.45 | 0.42933 | |
4# | 4.97 | 0 | 2.55 | 0.14695 |
7.81 | 24 | 3.46 | 0.19940 | |
10.84 | 48 | 3.77 | 0.21697 | |
13.89 | 72 | 4.84 | 0.27864 | |
5# | 3.97 | 0 | 2.32 | 0.13341 |
5.69 | 24 | 3.10 | 0.17865 | |
6.43 | 48 | 3.19 | 0.18355 | |
6.81 | 72 | 3.50 | 0.20170 |
Table 3 Titration results of AN precipitation amount measured by water-soluble method
编号 | 平均粒径D[3,2]/μm | 振动 时间/h | 消耗氢氧化钠溶液平均体积 | 硝酸铵 析出量M/g |
---|---|---|---|---|
1# | 9.47 | 0 | 6.35 | 0.36594 |
— | 24 | 8.43 | 0.48552 | |
— | 48 | 10.25 | 0.59070 | |
— | 72 | 15.46 | 0.89094 | |
2# | 9.01 | 0 | 4.63 | 0.26653 |
15.95 | 24 | 5.53 | 0.31840 | |
— | 48 | 6.48 | 0.37315 | |
— | 72 | 9.25 | 0.53307 | |
3# | 7.41 | 0 | 3.05 | 0.17577 |
8.89 | 24 | 3.34 | 0.19248 | |
13.53 | 48 | 4.64 | 0.26711 | |
— | 72 | 7.45 | 0.42933 | |
4# | 4.97 | 0 | 2.55 | 0.14695 |
7.81 | 24 | 3.46 | 0.19940 | |
10.84 | 48 | 3.77 | 0.21697 | |
13.89 | 72 | 4.84 | 0.27864 | |
5# | 3.97 | 0 | 2.32 | 0.13341 |
5.69 | 24 | 3.10 | 0.17865 | |
6.43 | 48 | 3.19 | 0.18355 | |
6.81 | 72 | 3.50 | 0.20170 |
转速/(r·min-1) | 黏度/(mPa·s) | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
600 | 227316 | 266414 | 296763 | 317961 |
800 | 243021 | 270813 | 287871 | 304515 |
1000 | 254841 | 274852 | 290566 | 300681 |
1200 | 260745 | 273051 | 281611 | 287573 |
1400 | 264437 | 272443 | 280157 | 282285 |
Table 4 Viscosity change of on-site mixed emulsion explosive matrix subjected to transport vibration
转速/(r·min-1) | 黏度/(mPa·s) | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
600 | 227316 | 266414 | 296763 | 317961 |
800 | 243021 | 270813 | 287871 | 304515 |
1000 | 254841 | 274852 | 290566 | 300681 |
1200 | 260745 | 273051 | 281611 | 287573 |
1400 | 264437 | 272443 | 280157 | 282285 |
1 | 汪旭光. 乳化炸药[M]. 2版. 北京: 冶金工业出版社, 2008. |
Wang X G. Emulsion Explosives[M]. Beijing: Metallurgical Industry Press, 2008. | |
2 | 王进. 乳胶体系的稳定性及破乳方法研究[D]. 南京: 南京理工大学, 2008. |
Wang J. Study on the stability and demulsification methods of explosive emulsion[D]. Nanjing: Nanjing University of Science and Technology, 2008. | |
3 | 李鑫, 查正清. 远程配送乳胶基质专用运输车的研制[J]. 工程爆破, 2014, 20(3): 40-42. |
Li X, Zha Z Q. Development of special transport vehicle for long-distance distribution of emulsion matrix[J]. Engineering Blasting, 2014, 20(3): 40-42. | |
4 | Califano V, Calabria R, Massoli P. Experimental evaluation of the effect of emulsion stability on micro-explosion phenomena for water-in-oil emulsions[J]. Fuel, 2014, 117: 87-94. |
5 | Hales R H, Cranney D H, Hurley E K, et al. Emulsion phase having improved stability: US6808573[P]. 2004-10-26. |
6 | Reynolds P A, McGillivray D J, Mata J P, et al. The stability of high internal phase emulsions at low surfactant concentration studied by small angle neutron scattering[J]. Journal of Colloid and Interface Science, 2010, 349(2): 544-553. |
7 | Masalova I, Tshilumbu N N, Mamedov E, et al. Effect of oil type on stability of high internal phase water-in-oil emulsions with super-cooled internal phase[J]. Chemical Engineering Communications, 2018, 205(1): 1-11. |
8 | 李洪伟, 桂继昌, 雷战, 等. 复合乳化剂对乳化炸药热安全性影响研究[J]. 安全与环境学报, 2021, 21(1): 133-138. |
Li H W, Gui J C, Lei Z, et al. Effect of the compound emulsifier on the thermal safety of the emulsion explosives[J]. Journal of Safety and Environment, 2021, 21(1): 133-138. | |
9 | 高圣涛, 王文丽, 方华, 等. 超声波作用下乳化炸药和乳胶基质的破乳现象试验研究[J]. 安徽理工大学学报(自然科学版), 2016, 36(1): 62-64. |
Gao S T, Wang W L, Fang H, et al. Research on demulsification of emulsion explosive and emulsion matrix under ultrasonic wave [J]. Journal of Anhui University of Science and Technology(Natural Science), 2016, 36(1): 62-64. | |
10 | 程奥, 何志伟, 王洋, 等. 油相材料对乳胶基质稳定性的影响[J]. 火工品, 2019(2): 35-38. |
Cheng A, He Z W, Wang Y, et al. Effect of oil phase material on storage stability of emulsion matrix[J]. Initiators & Pyrotechnics, 2019(2): 35-38. | |
11 | 吴红波. 动压作用下乳化炸药减敏机理研究[D]. 淮南: 安徽理工大学, 2011. |
Wu H B. Research on desensitization mechanism of emulsion explosive under dynamic pressure[D]. Huainan: Anhui University of Science & Technology, 2011. | |
12 | 闫国斌, 汪旭光, 王尹军. 乳化炸药微观结构对其宏观性能的影响分析[J]. 工程爆破, 2016, 22(5): 40-44. |
Yan G B, Wang X G, Wang Y J. Influence of microstructure of emulsion explosive on macro performance[J]. Engineering Blasting, 2016, 22(5): 40-44. | |
13 | 洪德凯. 轻型载货汽车振动分析与减振设计[D]. 淄博: 山东理工大学, 2020. |
Hong D K. Dynamic analysis and vibration suppression design of a light truck[D]. Zibo: Shandong University of Science and Technology, 2020. | |
14 | van den Pol E, Thies-Weesie D M E, Petukhov A V, et al. Influence of polydispersity on the phase behavior of colloidal goethite[J]. The Journal of Chemical Physics, 2008, 129(16): 164175. |
15 | 张阳, 汪旭光, 王阳, 等. 基于逾渗理论对乳胶基质老化过程的分析[J]. 化工学报, 2017, 68(7): 2938-2945. |
Zhang Y, Wang X G, Wang Y, et al. Aging analysis of emulsion explosive matrix based on percolation theory[J]. CIESC Journal, 2017, 68(7): 2938-2945. | |
16 | 张阳, 汪旭光, 王尹军, 等. 乳胶基质老化过程的结晶动力学研究[J]. 化工学报, 2018, 69(10): 4464-4470. |
Zhang Y, Wang X G, Wang Y J, et al. Crystallization kinetics of emulsion explosive matrix during aging process[J]. CIESC Journal, 2018, 69(10): 4464-4470. | |
17 | 宋家良. 乳化炸药的几何稳定性理论研究[J]. 煤矿爆破, 2005(4): 1-3. |
Song J L. A theoretical study on the geometry stability of emulsion explosive[J]. Coal Mine Blasting, 2005(4): 1-3. | |
18 | Mcclements D J. Critical review of techniques and methodologies for characterization of emulsion stability[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(7): 611-649. |
19 | 王阳, 汪旭光, 陶铁军, 等. 乳化基质自然储存失稳机理研究[J]. 爆破, 2017, 34(2): 110-116, 126. |
Wang Y, Wang X G, Tao T J, et al. Instability mechanism of emulsion explosive matrix suffering long-time storage[J]. Blasting, 2017, 34(2): 110-116, 126. | |
20 | 刘杰, 徐志祥, 孔煜. 乳化炸药稳定性及其破乳机理研究[J]. 爆破器材, 2015, 44(6): 38-42. |
Liu J, Xu Z X, Kong Y. Storage stability and demulsion mechanism of emulsion explosives[J]. Explosive Materials, 2015, 44(6): 38-42. | |
21 | Masalova I, Kharatyan E, Tshilumbu N N. Effect of the type of the oil phase on stability of highly concentrated water-in-oil emulsions [J]. Colloid Journal, 2013, 75 (5): 579-585. |
22 | Foudazi R, Masalova I, Malkin A. The role of interdroplet interaction in the physics of highly concentrated emulsions[J]. Colloid Journal, 2010, 72: 74-92. |
23 | 滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009: 9, 16-18. |
Teng X R. Surface Physical Chemistry[M]. Beijing: Chemical Industry Press, 2009: 9, 16-18. | |
24 | 严应政, 李国华. 杨氏方程推导应用中的几个疑点及其它[J]. 西北建筑工程学院学报(自然科学版), 2001, 18(3): 89-94. |
Yan Y Z, Li G H. Several questionable points and others in derivation and use of Young's equation[J]. Journal of Northwestem Institute of Architecture Engineering, 2001, 18(3): 89-94. | |
25 | 张阳. 乳胶基质失稳过程的规律研究[D]. 北京: 北京科技大学, 2020. |
Zhang Y. Study on the evolution characteristic of emulsion explosive matrix during the aging process[D]. Beijing:University of Science and Technology Beijing, 2020. | |
26 | Bibette J, Leal-Calderon F, Schmitt V, et al. Emulsion Science[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. |
27 | 王阳. 现场混装乳化炸药基质远程配送稳定性研究[D]. 北京: 北京科技大学, 2020. |
Wang Y. The instability mechanism of emulsion matrices for remote distribution[D]. Beijing: University of Science and Technology Beijing, 2020. | |
28 | Tadros T F. An Introduction to Surfactants[M]. Walter: de Gruyter, 2014. |
29 | 吴攀宇, 刘锋, 魏国, 等. 动态挤压对现场混装乳化炸药稳定性的影响[J]. 含能材料, 2021, 29(12): 1160-1167. |
Wu P Y, Liu F, Wei G, et al. Influence of dynamic extrusion on stability of field mixed emulsion explosive[J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1160-1167. | |
30 | 魏国, 刘锋, 吴攀宇, 等. 振动作用对现场混装乳化炸药稳定性的影响[J]. 火炸药学报, 2022, 45(1): 90-96. |
Wei G, Liu F, Wu P Y, et al. Influence of vibration on the stability of on-site mixed emulsion explosive[J]. Chinese Journal of Explosives & Propellants, 2022, 45(1): 90-96. |
[1] | ZHANG Yang, WANG Xuguang, WANG Yinjun, WANG Quan, WU Hongbo. Crystallization kinetics of emulsion explosive matrix during aging process [J]. CIESC Journal, 2018, 69(10): 4464-4470. |
[2] | ZHANG Yang, WANG Xuguang, WANG Yang, WANG Yinjun. Aging analysis of emulsion explosive matrix based on percolation theory [J]. CIESC Journal, 2017, 68(7): 2938-2945. |
[3] | WU Qiujie, CHEN Xiang, TAN Liu, LI Min, XU Sen, LIU Dabin. Influence of crystalloid NaNO2 on safety of emulsion explosive [J]. CIESC Journal, 2017, 68(5): 2211-2215. |
[4] | GONG Yue, WANG Xuguang, HE Jie, YAN Shilong, CHENG Yangfan. Influence of aluminum particle size on energy output characteristics and thermal stability of emulsion explosive [J]. CIESC Journal, 2017, 68(4): 1721-1727. |
[5] | CHENG Yangfan, WANG Quan, GONG Yue, TANG Youfu, YUAN Heping, QIAN Hai, SHEN Zhaowu. Preparation and detonation properties of MgH2 type of composite sensitized emulsion explosives [J]. CIESC Journal, 2017, 68(4): 1734-1739. |
[6] | DU Mingran, WANG Xuguang, YAN Shilong. Influences of KCl content on pressure desensitization of emulsion explosives [J]. CIESC Journal, 2015, 66(12): 5179-5184. |
[7] | XIE Yichao,HAN Zhiwei,XIE Lifeng. Preparation of emulsion explosives with cerium nitrate by detonation method [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 400-403. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||