CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4565-4575.DOI: 10.11949/0438-1157.20220778
• Process system engineering • Previous Articles Next Articles
Dong JI(), Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU()
Received:
2022-05-31
Revised:
2022-07-05
Online:
2022-11-02
Published:
2022-10-05
Contact:
Huairong ZHOU
季东(), 王健, 王可, 李婧玮, 孟文亮, 杨勇, 李贵贤, 王东亮, 周怀荣()
通讯作者:
周怀荣
作者简介:
季东(1978—),男,博士,教授,jidong@lut.edu.cn
基金资助:
CLC Number:
Dong JI, Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies[J]. CIESC Journal, 2022, 73(10): 4565-4575.
季东, 王健, 王可, 李婧玮, 孟文亮, 杨勇, 李贵贤, 王东亮, 周怀荣. 不同CO2捕集技术的CO2耦合绿氢制甲醇工艺研究[J]. 化工学报, 2022, 73(10): 4565-4575.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
CO2/%(mol) | 14.6 |
N2/%(mol) | 77.9 |
O2/%(mol) | 3.3 |
H2O/%(mol) | 4.2 |
烟气流量/(kmol/h) | 40000 |
烟气进料温度/℃ | 42 |
烟气进料压力/bar | 1.09 |
Table 1 The specifications of the flue gas
参数 | 数值 |
---|---|
CO2/%(mol) | 14.6 |
N2/%(mol) | 77.9 |
O2/%(mol) | 3.3 |
H2O/%(mol) | 4.2 |
烟气流量/(kmol/h) | 40000 |
烟气进料温度/℃ | 42 |
烟气进料压力/bar | 1.09 |
过程单元 | 关键参数 | 数值 |
---|---|---|
CO2捕集 | ||
MEA[ | 吸收温度 | 42℃ |
解吸温度 | 120℃ | |
MEA 消耗 | 465 t/h | |
CO2 捕集率 | 90% | |
PCS[ | 吸收温度 | 42℃ |
解吸温度 | 110℃ | |
贫相体积分数 | 41.2% | |
CO2 捕集率 | 90% | |
DMC[ | 吸收温度 | 30℃ |
吸收压力 | 3 MPa | |
闪蒸压力 | 5/1 MPa | |
CO2 捕集率 | 90% | |
GMS[ | CO2/N2选择性(一级膜) | 49 |
CO2渗透速率(一级膜) | 2000 GPU | |
CO2/N2选择性(二级膜) | 140 | |
CO2渗透速率(二级膜) | 700 GPU | |
渗透压力 | 0.6 MPa | |
CO2 捕集率 | 90% | |
CO2转化 | ||
MS[ | 反应温度 | 250℃ |
反应压力 | 5 MPa | |
MD[ | 进料温度 | 77℃ |
操作压力 | 0.1 MPa | |
塔板数 | 33 | |
回流比 | 2.3 | |
甲醇回收率 | 99.5% | |
甲醇质量分数 | 99.9% |
Table 2 Key parameters for modeling and simulation of CTM process with four different CO2 capture technologies
过程单元 | 关键参数 | 数值 |
---|---|---|
CO2捕集 | ||
MEA[ | 吸收温度 | 42℃ |
解吸温度 | 120℃ | |
MEA 消耗 | 465 t/h | |
CO2 捕集率 | 90% | |
PCS[ | 吸收温度 | 42℃ |
解吸温度 | 110℃ | |
贫相体积分数 | 41.2% | |
CO2 捕集率 | 90% | |
DMC[ | 吸收温度 | 30℃ |
吸收压力 | 3 MPa | |
闪蒸压力 | 5/1 MPa | |
CO2 捕集率 | 90% | |
GMS[ | CO2/N2选择性(一级膜) | 49 |
CO2渗透速率(一级膜) | 2000 GPU | |
CO2/N2选择性(二级膜) | 140 | |
CO2渗透速率(二级膜) | 700 GPU | |
渗透压力 | 0.6 MPa | |
CO2 捕集率 | 90% | |
CO2转化 | ||
MS[ | 反应温度 | 250℃ |
反应压力 | 5 MPa | |
MD[ | 进料温度 | 77℃ |
操作压力 | 0.1 MPa | |
塔板数 | 33 | |
回流比 | 2.3 | |
甲醇回收率 | 99.5% | |
甲醇质量分数 | 99.9% |
反应 | k | E/(cal/mol) |
---|---|---|
(1) | 3.02×1014 | 9855.8 |
(2) | 1.33×1017 | 13249.0 |
(1)的可逆反应 | 5.52×1023 | 16518.0 |
(2)的可逆反应 | 6.63×1016 | 25656.0 |
Table 3 The parameters k and E in the equations
反应 | k | E/(cal/mol) |
---|---|---|
(1) | 3.02×1014 | 9855.8 |
(2) | 1.33×1017 | 13249.0 |
(1)的可逆反应 | 5.52×1023 | 16518.0 |
(2)的可逆反应 | 6.63×1016 | 25656.0 |
反应 | A | B | C | D |
---|---|---|---|---|
(3) | 132.899 | -13446 | -22.4773 | 0 |
(4) | 231.465 | -12092 | -35.4819 | 0 |
(5) | 2.8898 | -3635.09 | 0 | 0 |
Table 4 The parameters of equilibrium constants
反应 | A | B | C | D |
---|---|---|---|---|
(3) | 132.899 | -13446 | -22.4773 | 0 |
(4) | 231.465 | -12092 | -35.4819 | 0 |
(5) | 2.8898 | -3635.09 | 0 | 0 |
CTM过程 | 天然气消耗/(t/h) | 电力消耗/MWh |
---|---|---|
CMEATM | 34.72 | 11.63 |
CPCSTM | 23.85 | 13.15 |
CDMCTM | 16.14 | 107.80 |
CGMSTM | 16.12 | 51.75 |
Table 5 Main energy consumption of CTM process
CTM过程 | 天然气消耗/(t/h) | 电力消耗/MWh |
---|---|---|
CMEATM | 34.72 | 11.63 |
CPCSTM | 23.85 | 13.15 |
CDMCTM | 16.14 | 107.80 |
CGMSTM | 16.12 | 51.75 |
单元 | 基准 | Sref | sf | f | |
---|---|---|---|---|---|
MEA[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 206.55 |
PCS[ | CO2产量 | 62.26 t/h | 0.67 | 0.65 | 87.14 |
DMC[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 244.45 |
GMS[ | CO2产量 | 423.36 t/h | 0.67 | 0.65 | 387.8 |
MS[ | 合成气进料量 | 10.81 kmol/s | 0.67 | 0.65 | 142.8 |
MD[ | 甲醇进料量 | 3.66 kg/s | 0.67 | 0.65 | 12.04 |
Table 6 Summary of investment data for main equipment components
单元 | 基准 | Sref | sf | f | |
---|---|---|---|---|---|
MEA[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 206.55 |
PCS[ | CO2产量 | 62.26 t/h | 0.67 | 0.65 | 87.14 |
DMC[ | CO2产量 | 2771.2 t/h | 0.67 | 0.65 | 244.45 |
GMS[ | CO2产量 | 423.36 t/h | 0.67 | 0.65 | 387.8 |
MS[ | 合成气进料量 | 10.81 kmol/s | 0.67 | 0.65 | 142.8 |
MD[ | 甲醇进料量 | 3.66 kg/s | 0.67 | 0.65 | 12.04 |
过程单元 | 关键参数 | 数值 | 文献值 |
---|---|---|---|
CO2捕集 | |||
MEA[ | MEA补充/(kg/t(CO2)) | 1.52 | 1.50 |
MEA循环量/(t/h) | 463 | — | |
贫相CO2负载/(mol/mol) | 0.25 | 0.20 | |
再生能耗/(MJ/kg CO2) | 4.02 | 4.00 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
PCS[ | 贫相体积分数/% | 41.2 | 43.6 |
溶剂循环速率/(kg/h) | 4.52×106 | 4.50×106 | |
再生能耗/(MJ/kg CO2) | 2.42 | 2.40 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
DMC[ | 溶剂损失/(kg/h) | 953 | 946 |
电力/MW | 635 | 629 | |
DMC循环量/(t/h) | 976.5 | — | |
再生能耗/(MJ/kg CO2) | 2.7 | — | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
GMS[ | 总膜面积/(106 m2) | 0.72 | 0.70 |
一级膜渗透测气体流率/(mol/s) | 9475 | 9240 | |
二级膜渗透测气体流率/(mol/s) | 8750 | 8625 | |
再生能耗/(MJ/kg CO2) | 1.72 | 1.70 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
CO2转化 | |||
MS单元[ | 单位甲醇CO2消耗/(t/(t MeOH) | 1.44 | 1.46 |
单位甲醇H2消耗/(t/t MeOH) | 0.194 | 0.199 | |
反应器出口流率/(t/h) | 472.8 | 467.6 | |
反应器出口甲醇组成/% | 12.4 | 12.0 | |
MD单元[ | 精馏塔塔顶质量流率/(t/h) | 55.4 | 55.1 |
甲醇质量分数/% | 99.90 | 99.96 | |
甲醇产量/(t/h) | 161.4 | — |
Table 7 Comparison of the simulated and reported results of key parameters
过程单元 | 关键参数 | 数值 | 文献值 |
---|---|---|---|
CO2捕集 | |||
MEA[ | MEA补充/(kg/t(CO2)) | 1.52 | 1.50 |
MEA循环量/(t/h) | 463 | — | |
贫相CO2负载/(mol/mol) | 0.25 | 0.20 | |
再生能耗/(MJ/kg CO2) | 4.02 | 4.00 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
PCS[ | 贫相体积分数/% | 41.2 | 43.6 |
溶剂循环速率/(kg/h) | 4.52×106 | 4.50×106 | |
再生能耗/(MJ/kg CO2) | 2.42 | 2.40 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
DMC[ | 溶剂损失/(kg/h) | 953 | 946 |
电力/MW | 635 | 629 | |
DMC循环量/(t/h) | 976.5 | — | |
再生能耗/(MJ/kg CO2) | 2.7 | — | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
GMS[ | 总膜面积/(106 m2) | 0.72 | 0.70 |
一级膜渗透测气体流率/(mol/s) | 9475 | 9240 | |
二级膜渗透测气体流率/(mol/s) | 8750 | 8625 | |
再生能耗/(MJ/kg CO2) | 1.72 | 1.70 | |
CO2捕集量(CC unit)/(t/h) | 231.26 | — | |
CO2捕集纯度/% | 99.5 | 99.5 | |
CO2转化 | |||
MS单元[ | 单位甲醇CO2消耗/(t/(t MeOH) | 1.44 | 1.46 |
单位甲醇H2消耗/(t/t MeOH) | 0.194 | 0.199 | |
反应器出口流率/(t/h) | 472.8 | 467.6 | |
反应器出口甲醇组成/% | 12.4 | 12.0 | |
MD单元[ | 精馏塔塔顶质量流率/(t/h) | 55.4 | 55.1 |
甲醇质量分数/% | 99.90 | 99.96 | |
甲醇产量/(t/h) | 161.4 | — |
1 | IEA. Global Energy Review: CO2 Emissions in 2021[R]. Paris: IEA, 2021. |
2 | Jung S H, Kim H, Kang Y, et al. Analysis of Korea's green technology policy and investment trends for the realization of carbon neutrality: focusing on CCUS technology[J]. Processes, 2022, 10(3): 501. |
3 | 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869. |
Huang H, Yang S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869. | |
4 | Papadopoulos A I, Tzirakis F, Tsivintzelis I, et al. Phase-change solvents and processes for postcombustion CO2 capture: a detailed review[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5088-5111. |
5 | 王涛, 刘飞, 方梦祥, 等. 两相吸收剂捕集二氧化碳技术研究进展[J]. 中国电机工程学报, 2021, 41(4): 1186-1196. |
Wang T, Liu F, Fang M X, et al. Research progress in biphasic solvent for CO2 capture technology[J]. Proceedings of the CSEE, 2021, 41(4): 1186-1196. | |
6 | Tang Z G, Li H W, Fei W Y, et al. Performance evaluation of a novel CO2 absorbent: dimethyl carbonate[J]. International Journal of Greenhouse Gas Control, 2016, 44: 140-151. |
7 | Lee S, Binns M, Kim J K. Automated process design and optimization of membrane-based CO2 capture for a coal-based power plant[J]. Journal of Membrane Science, 2018, 563: 820-834. |
8 | Kim S H, Kim J K, Yeo J G, et al. Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis[J]. Chemical Engineering Research and Design, 2017, 117: 659-669. |
9 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
10 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
11 | Ravikumar D, Keoleian G, Miller S. The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production[J]. Applied Energy, 2020, 279: 115770. |
12 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
13 | Lee B, Lee H, Lim D, et al. Renewable methanol synthesis from renewable H2 and captured CO2: how can power-to-liquid technology be economically feasible? [J]. Applied Energy, 2020, 279: 115827. |
14 | Li B H, Zhang N, Smith R. Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution[J]. Applied Energy, 2016, 161: 707-717. |
15 | Wang R J, Liu S S, Wang L D, et al. Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas[J]. Applied Energy, 2019, 242: 302-310. |
16 | Zhou W J, Zhu B, Chen D J, et al. Technoeconomic assessment of China's indirect coal liquefaction projects with different CO2 capture alternatives[J]. Energy, 2011, 36(11): 6559-6566. |
17 | Xu J Y, Wang Z, Qiao Z H, et al. Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure[J]. Journal of Membrane Science, 2019, 581: 195-213. |
18 | Pérez-Fortes M, Schöneberger J C, Boulamanti A, et al. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment[J]. Applied Energy, 2016, 161: 718-732. |
19 | Amirkhosrow M, Nemati Lay E. Simulation model evaluation of desorber column in CO2 capture process by MEA scrubbing: a rigorous rate-based model for kinetic model and mass transfer correlations analysis[J]. Fuel Processing Technology, 2020, 203: 106390. |
20 | Zhang W D, Jin X H, Tu W W, et al. Development of MEA-based CO2 phase change absorbent[J]. Applied Energy, 2017, 195: 316-323. |
21 | Ren L X, Chang F L, Kang D Y, et al. Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant[J]. Journal of Membrane Science, 2020, 603: 118001. |
22 | 孟文亮, 李贵贤, 周怀荣, 等. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
Meng W L, Li G X, Zhou H R, et al. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen[J]. CIESC Journal, 2022, 73(4): 1714-1723. | |
23 | An X, Zuo Y Z, Zhang Q, et al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88-94. |
24 | Kiss A A, Pragt J J, Vos H J, et al. Novel efficient process for methanol synthesis by CO2 hydrogenation[J]. Chemical Engineering Journal, 2016, 284: 260-269. |
25 | Lim H W, Park M J, Kang S H, et al. Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10448-10455. |
26 | Chen J J, Qian Y, Yang S Y. Conceptual design and techno-economic analysis of a coal to methanol and ethylene glycol cogeneration process with low carbon emission and high efficiency[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5229-5239. |
27 | Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54. |
28 | Askmar J, Carbol J. Carbon dioxide capture using phase changing solvents — a comparison with state-of-the-art MEA technologies[D]. Gothenburg, Sweden: Chalmers University of Technology, 2017. |
29 | He C, Feng X. Evaluation indicators for energy-chemical systems with multi-feed and multi-product[J]. Energy, 2012, 43(1): 344-354. |
30 | Ma Y Q, Liao Y T, Su Y, et al. Comparative investigation of different CO2 capture technologies for coal to ethylene glycol process[J]. Processes, 2021, 9(2): 207. |
31 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
32 | Zhang J F, Qiao Y, Wang W Z, et al. Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents[J]. Energy Procedia, 2013, 37: 1254-1261. |
33 | Chen Z B, Jing G H, Lv B H, et al. An efficient solid-liquid biphasic solvent for CO2 capture: crystalline powder product and low heat duty[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14493-14503. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[14] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[15] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||