CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4551-4564.DOI: 10.11949/0438-1157.20220753
• Process system engineering • Previous Articles Next Articles
Zheng WANG(), Feng XU, Xionglin LUO(
)
Received:
2022-05-27
Revised:
2022-06-27
Online:
2022-11-02
Published:
2022-10-05
Contact:
Xionglin LUO
通讯作者:
罗雄麟
作者简介:
王峥(1996—),男,硕士研究生,wangzheng_pcx@163.com
基金资助:
CLC Number:
Zheng WANG, Feng XU, Xionglin LUO. Full-cycle optimization of acetylene conversion distribution for acetylene hydrogenation beds-in-series reactor[J]. CIESC Journal, 2022, 73(10): 4551-4564.
王峥, 许锋, 罗雄麟. 乙炔加氢串联反应器全周期乙炔转化率最优分配研究[J]. 化工学报, 2022, 73(10): 4551-4564.
床层 | 操作方案 | 乙炔转化率/% | 操作点 | 入口温度/℃ | 入口氢气流量/(kg·h-1) |
---|---|---|---|---|---|
床层1 | 当前生产方案 | 68.0 | A | 47.65 | 29.40 |
方案Ⅰ(平均) | 33.3 | A′ | 保持 | ↓↓ | |
方案Ⅱ(安全) | 45.0 | A″ | 保持 | ↓ | |
床层2 | 当前生产方案 | 28.0 | B | 48.65 | 13.92 |
方案Ⅰ(平均) | 33.3 | B′ | 保持 | ↓ | |
方案Ⅱ(安全) | 45.0 | B″ | 保持 | ↑ | |
床层3 | 当前生产方案 | 4.0 | C | 49.65 | 0.78 |
方案Ⅰ(平均) | 33.4 | C′ | 保持 | ↑↑ | |
方案Ⅱ(安全) | 10.0 | C″ | 保持 | ↑ |
Table 1 Adjustment of reactor inlet operating conditions
床层 | 操作方案 | 乙炔转化率/% | 操作点 | 入口温度/℃ | 入口氢气流量/(kg·h-1) |
---|---|---|---|---|---|
床层1 | 当前生产方案 | 68.0 | A | 47.65 | 29.40 |
方案Ⅰ(平均) | 33.3 | A′ | 保持 | ↓↓ | |
方案Ⅱ(安全) | 45.0 | A″ | 保持 | ↓ | |
床层2 | 当前生产方案 | 28.0 | B | 48.65 | 13.92 |
方案Ⅰ(平均) | 33.3 | B′ | 保持 | ↓ | |
方案Ⅱ(安全) | 45.0 | B″ | 保持 | ↑ | |
床层3 | 当前生产方案 | 4.0 | C | 49.65 | 0.78 |
方案Ⅰ(平均) | 33.4 | C′ | 保持 | ↑↑ | |
方案Ⅱ(安全) | 10.0 | C″ | 保持 | ↑ |
项目 | 操作变量 | 符号及单位 | 数值 |
---|---|---|---|
床层1 | 入口氢气分压 | 29.55 | |
入口温度 | 320.8 | ||
入口乙炔分压 | 29.55 | ||
入口乙烯分压 | 1684.35 | ||
床层2 | 入口氢气分压 | 14.00 | |
入口温度 | 321.8 | ||
床层3 | 入口氢气分压 | 0.79 | |
入口温度 | 322.8 | ||
运行周期 | 时间 | Γ/d | 180 |
Table 2 Operational conditions for the simulation run
项目 | 操作变量 | 符号及单位 | 数值 |
---|---|---|---|
床层1 | 入口氢气分压 | 29.55 | |
入口温度 | 320.8 | ||
入口乙炔分压 | 29.55 | ||
入口乙烯分压 | 1684.35 | ||
床层2 | 入口氢气分压 | 14.00 | |
入口温度 | 321.8 | ||
床层3 | 入口氢气分压 | 0.79 | |
入口温度 | 322.8 | ||
运行周期 | 时间 | Γ/d | 180 |
项目 | ||
---|---|---|
模拟1 | 29.55 | 320.8 |
模拟2 | 保持 | 321.8 |
模拟3 | 保持 | 322.8 |
Table 3 Inlet temperature change of the first reactor bed
项目 | ||
---|---|---|
模拟1 | 29.55 | 320.8 |
模拟2 | 保持 | 321.8 |
模拟3 | 保持 | 322.8 |
项目 | ||
---|---|---|
模拟4 | 320.8 | 27.55 |
模拟5 | 保持 | 28.55 |
模拟6 | 保持 | 29.55 |
Table 4 Inlet hydrogen change of the first reactor bed
项目 | ||
---|---|---|
模拟4 | 320.8 | 27.55 |
模拟5 | 保持 | 28.55 |
模拟6 | 保持 | 29.55 |
符号 | 说明 | |
---|---|---|
优化目标(J) | 全周期乙烯产品累积产量 | |
乙烯产品产量(MC) | 单日乙烯产品产量 | |
周期(Γf) | 优化运行180 d | |
反应过程模型f(·) | 操作优化应用的模型,表达式见式(6)~式(12) | |
操作优化约束g(·) | 操作优化约束见 | |
催化剂活性(θ) | 操作优化考虑催化剂活性变化,表达式见式(18) | |
出口乙炔摩尔分数(α) | α为乙炔摩尔分数,αlb=1×10-6,αub=1×10-5 | |
状态变量(x) | 各床层入口乙炔分压 | 各床层出口乙烯分压 |
各床层入口乙烯分压 | 各床层出口氢气分压 | |
各床层出口乙炔分压 | 各床层出口温度 |
Table 5 Symbolic description of full-cycle operation optimization model
符号 | 说明 | |
---|---|---|
优化目标(J) | 全周期乙烯产品累积产量 | |
乙烯产品产量(MC) | 单日乙烯产品产量 | |
周期(Γf) | 优化运行180 d | |
反应过程模型f(·) | 操作优化应用的模型,表达式见式(6)~式(12) | |
操作优化约束g(·) | 操作优化约束见 | |
催化剂活性(θ) | 操作优化考虑催化剂活性变化,表达式见式(18) | |
出口乙炔摩尔分数(α) | α为乙炔摩尔分数,αlb=1×10-6,αub=1×10-5 | |
状态变量(x) | 各床层入口乙炔分压 | 各床层出口乙烯分压 |
各床层入口乙烯分压 | 各床层出口氢气分压 | |
各床层出口乙炔分压 | 各床层出口温度 |
床层 | 优化变量(u) | 符号及单位 | 优化约束 | 初值 |
---|---|---|---|---|
床层1 | 入口温度 | 320.8 | ||
入口氢气分压 | 29.55 | |||
床层2 | 入口温度 | 321.8 | ||
入口氢气分压 | 14.00 | |||
床层3 | 入口温度 | 322.8 | ||
入口氢气分压 | 0.79 |
Table 6 Constraints of operation optimization
床层 | 优化变量(u) | 符号及单位 | 优化约束 | 初值 |
---|---|---|---|---|
床层1 | 入口温度 | 320.8 | ||
入口氢气分压 | 29.55 | |||
床层2 | 入口温度 | 321.8 | ||
入口氢气分压 | 14.00 | |||
床层3 | 入口温度 | 322.8 | ||
入口氢气分压 | 0.79 |
床层 | 优化变量(u) | Ⅰ | Ⅱ-A | Ⅱ-B | Ⅱ-C |
---|---|---|---|---|---|
床层1 | 入口温度/K | 320.8 | 320.8 | 320.8 | 320.8 |
入口氢气流量/(kg·h-1) | 13.67 | 18.41 | 19.60 | 20.10 | |
床层2 | 入口温度/K | 321.8 | 321.8 | 321.8 | 321.8 |
入口氢气流量/(kg·h-1) | 13.63 | 20.25 | 19.30 | 18.90 | |
床层3 | 入口温度/K | 322.8 | 322.8 | 322.8 | 322.8 |
入口氢气流量/(kg·h-1) | 13.63 | 2.54 | 2.54 | 2.54 |
Table 7 Inlet initial value of acetylene conversion rate distribution scheme
床层 | 优化变量(u) | Ⅰ | Ⅱ-A | Ⅱ-B | Ⅱ-C |
---|---|---|---|---|---|
床层1 | 入口温度/K | 320.8 | 320.8 | 320.8 | 320.8 |
入口氢气流量/(kg·h-1) | 13.67 | 18.41 | 19.60 | 20.10 | |
床层2 | 入口温度/K | 321.8 | 321.8 | 321.8 | 321.8 |
入口氢气流量/(kg·h-1) | 13.63 | 20.25 | 19.30 | 18.90 | |
床层3 | 入口温度/K | 322.8 | 322.8 | 322.8 | 322.8 |
入口氢气流量/(kg·h-1) | 13.63 | 2.54 | 2.54 | 2.54 |
项目 | 乙炔转化率平均分配 | 乙炔转化率安全分配 | ||
---|---|---|---|---|
Ⅰ(33∶33∶33) | Ⅱ-A(43∶47∶10) | Ⅱ-B(45∶45∶10) | Ⅱ-C(47∶43∶10) | |
乙炔转化率分配附加约束 | 0.32≤y[ | 0.40≤y[ | 0.42≤y[ | 0.44≤y[ |
0.32≤y[ | 0.44≤y[ | 0.42≤y[ | 0.40≤y[ | |
0.32≤y[ | 0.05≤y[ | 0.05≤y[ | 0.05≤y[ |
Table 8 Distribution scheme of acetylene conversion rate
项目 | 乙炔转化率平均分配 | 乙炔转化率安全分配 | ||
---|---|---|---|---|
Ⅰ(33∶33∶33) | Ⅱ-A(43∶47∶10) | Ⅱ-B(45∶45∶10) | Ⅱ-C(47∶43∶10) | |
乙炔转化率分配附加约束 | 0.32≤y[ | 0.40≤y[ | 0.42≤y[ | 0.44≤y[ |
0.32≤y[ | 0.44≤y[ | 0.42≤y[ | 0.40≤y[ | |
0.32≤y[ | 0.05≤y[ | 0.05≤y[ | 0.05≤y[ |
优化方案 | 乙炔转化率分配 | 180 d乙烯产品累积产量/t | 180 d乙烯产品累积增量/t |
---|---|---|---|
当前生产方案(未优化) | 无 | 100831.04 | 251.16 |
当前生产方案(常规优化) | 无 | 101339.92 | 713.90 |
方案Ⅰ | 33∶33∶33 | 101573.55 | 844.68 |
方案Ⅱ-A | 43∶47∶10 | 101521.03 | 816.23 |
方案Ⅱ-B | 45∶45∶10 | 101511.91 | 812.62 |
方案Ⅱ-C | 47∶43∶10 | 101505.81 | 808.25 |
Table 9 Cumulative product yield of ethylene on system at 180 days operation
优化方案 | 乙炔转化率分配 | 180 d乙烯产品累积产量/t | 180 d乙烯产品累积增量/t |
---|---|---|---|
当前生产方案(未优化) | 无 | 100831.04 | 251.16 |
当前生产方案(常规优化) | 无 | 101339.92 | 713.90 |
方案Ⅰ | 33∶33∶33 | 101573.55 | 844.68 |
方案Ⅱ-A | 43∶47∶10 | 101521.03 | 816.23 |
方案Ⅱ-B | 45∶45∶10 | 101511.91 | 812.62 |
方案Ⅱ-C | 47∶43∶10 | 101505.81 | 808.25 |
1 | 杜文莉, 鲍春瑜, 陈旭. 串联型乙炔加氢反应过程的动态优化[J]. 信息与控制, 2017, 46(1): 83-89. |
Du W L, Bao C Y, Chen X. Dynamic optimization of tandem acetylene hydrogenation process[J]. Information and Control, 2017, 46(1): 83-89. | |
2 | McCue A J, Anderson J A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Frontiers of Chemical Science and Engineering, 2015, 9(2): 142-153. |
3 | 张健, 黄邦印, 隋志军, 等. 不同Pd/Ag配比Pd-Ag/Al2O3催化乙炔加氢微观反应动力学分析[J]. 化工学报, 2018, 69(2): 674-681. |
Zhang J, Huang B Y, Sui Z J, et al. Microkinetic analysis of acetylene hydrogenation over Pd-Ag/Al2O3 catalyst with different Pd/Ag ratios[J]. CIESC Journal, 2018, 69(2): 674-681. | |
4 | Abakumov A A, Bychko I B, Selyshchev O V, et al. Highly selective hydrogenation of acetylene over reduced graphene oxide carbocatalyst[J]. Materialia, 2021, 18: 101163. |
5 | Park Y, Lee S, Hyun K, et al. Breaking the inverse relationship between catalytic activity and selectivity in acetylene partial hydrogenation using dynamic metal-polymer interaction[J]. Journal of Catalysis, 2021, 404: 716-725. |
6 | 杨方明, 张亮, 谢春丽. 碳二加氢反应器优化操作分析[J]. 当代化工, 2011, 40(10): 1007-1012. |
Yang F M, Zhang L, Xie C L. Analysis on optimized operation of acetylene converter[J]. Contemporary Chemical Industry, 2011, 40(10): 1007-1012. | |
7 | 罗雄麟. 化工过程动态学[M]. 北京: 化学工业出版社, 2005. |
Luo X L. Chemical Process Dynamics[M]. Beijing: Chemical Industry Press, 2005. | |
8 | 谢府命, 许锋, 罗雄麟. 工艺调度对乙炔加氢反应器优化运行策略的影响分析[J]. 化工学报, 2021, 72(5): 2718-2726. |
Xie F M, Xu F, Luo X L. Influence analysis of process scheduling on optimized operation strategy of acetylene hydrogenation reactor[J]. CIESC Journal, 2021, 72(5): 2718-2726. | |
9 | 张东平, 王功华. 乙炔加氢反应器的模拟与分析[J]. 石油化工, 2003, 32(5): 414-417. |
Zhang D P, Wang G H. Simulating and analysis of reactor for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2003, 32(5): 414-417. | |
10 | 涂飞, 青红英, 罗雄麟, 等. 乙炔加氢反应器的先进控制(Ⅰ): 动态机理模型的建立[J]. 化工自动化及仪表, 2003, 30(1): 20-24. |
Tu F, Qing H Y, Luo X L, et al. Advanced control of acetylene hydrogenation reactor(Ⅰ): Dynamic mechanism model[J]. Control and Instruments in Chemical Industry, 2003, 30(1): 20-24. | |
11 | Weiss G. Modelling and control of an acetylene converter[J]. Journal of Process Control, 1996, 6(1): 7-15. |
12 | Gobbo R, Soares R P, Lansarin M A, et al. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors[J]. Brazilian Journal of Chemical Engineering, 2004, 21(4): 545-556. |
13 | Szukiewicz M, Kaczmarski K, Petrus R. Modelling of fixed-bed reactor: two models of industrial reactor for selective hydrogenation of acetylene[J]. Chemical Engineering Science, 1998, 53(1): 149-155. |
14 | 谢府命, 许锋, 梁志珊, 等. 乙炔加氢反应器全周期操作优化[J]. 化工学报, 2018, 69(3): 1081-1091. |
Xie F M, Xu F, Liang Z S, et al. Full-cycle operation optimization of acetylene hydrogenation reactor[J]. CIESC Journal, 2018, 69(3): 1081-1091. | |
15 | Houzvicka J, Pestman R, Ponec V. The role of carbonaceous deposits and support impurities in the selective hydrogenation of ethyne[J]. Catalysis Letters, 1994, 30(1/2/3/4): 289-296. |
16 | Asplund S. Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation[J]. Journal of Catalysis, 1996, 158(1): 267-278. |
17 | Takht R M, Sahebdelfar S. Pd-Ag/Al2O3 catalyst: stages of deactivation in tail-end acetylene selective hydrogenation[J]. Applied Catalysis A: General, 2016, 525: 197-203. |
18 | Kuhn M, Lucas M, Claus P. Precise recognition of catalyst deactivation during acetylene hydrogenation studied with the advanced TEMKIN reactor[J]. Catalysis Communications, 2015, 72: 170-173. |
19 | Rahimpour M R, Dehghani O, Gholipour M R, et al. A novel configuration for P d / A g / α - A l 2 O 3 catalyst regeneration in the acetylene hydrogenation reactor of a multi feed cracker[J]. Chemical Engineering Journal, 2012, 198/199: 491-502. |
20 | 田亮, 蒋达, 钱锋. 催化剂失活条件下的碳二加氢反应器模拟与优化[J]. 化工学报, 2012, 63(1): 185-192. |
Tian L, Jiang D, Qian F. Simulation and optimization of acetylene converter with decreasing catalyst activity[J]. CIESC Journal, 2012, 63(1): 185-192. | |
21 | Samavati M, Ebrahim H A, Dorj Y. Effect of the operating parameters on the simulation of acetylene hydrogenation reactor with catalyst deactivation[J]. Applied Catalysis A: General, 2018, 567: 45-55. |
22 | Brown M W, Penlidis A, Sullivan G R. Control policies for an industrial acetylene hydrogenation reactor[J]. The Canadian Journal of Chemical Engineering, 1991, 69(1): 152-164. |
23 | Lesieur M, Sharma S, Nath R. Advanced process control and optimization of acetylene hydrogenation reactors[C]// AIChE Spring National Meeting 15th Annual Ethylene Producers' Conference Session T9a05-Ethylene Plant Process Control. Petromont Varennes, Canada, 2003: 815-827. |
24 | Aeowjaroenlap H, Chotiwiriyakun K, Tiensai N, et al. Dynamic modelling and optimization of acetylene hydrogenation reactor to improve overall economics of ethylene plant[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2017: 847-852. |
25 | 戴伟, 朱警, 万文举. C2馏分选择加氢工艺和催化剂研究进展[J]. 石油化工, 2000, 29(7): 535-540. |
Dai W, Zhu J, Wan W J. Advances in process and catalysts for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2000, 29(7): 535-540. | |
26 | 朱炳辰. 化学反应工程[M]. 3版. 北京: 化学工业出版社, 2001. |
Zhu B C. Chemical Reaction Engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2001. | |
27 | 任超, 孙琳, 罗雄麟. 换热器因应结垢慢时变的控制系统重构分析[J]. 化工学报, 2021, 72(10): 5273-5283. |
Ren C, Sun L, Luo X L. Analysis on the reconfiguration of the control system of the heat exchanger in response to the slow and time-varying fouling[J]. CIESC Journal, 2021, 72(10): 5273-5283. | |
28 | Borodziński A, Cybulski A. The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits[J]. Applied Catalysis A: General, 2000, 198(1/2): 51-66. |
29 | 罗雄麟, 涂飞, 杜殿林, 等. 乙炔加氢反应器的先进控制(Ⅲ): 控制策略及其工程应用[J]. 化工自动化及仪表, 2003, 30(3): 10-15. |
Luo X L, Tu F, Du D L, et al. Advanced control of acetylene hydrogenation reactor (Ⅲ): Control strategy and its application[J]. Control and Instruments in Chemical Industry, 2003, 30(3): 10-15. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[3] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[4] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[5] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[6] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
[7] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[8] | Ling YANG, Guomin CUI, Zhiqiang ZHOU, Yuan XIAO. Fine search strategy applied to mass exchange network synthesis [J]. CIESC Journal, 2022, 73(7): 3145-3155. |
[9] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[10] | Shujun ZHANG, Shihui WANG, Xin ZHANG, Xu JI, Yiyang DAI, Yagu DANG, Li ZHOU. Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit [J]. CIESC Journal, 2022, 73(4): 1658-1672. |
[11] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[12] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
[13] | Senshan CAO, Feng XU, Xionglin LUO. Process simulation of stream circulation system based on stability: [J]. CIESC Journal, 2022, 73(3): 1256-1269. |
[14] | Yaoming CHEN,Feng XU,Xionglin LUO. A coordinated optimal margin design method for chemical process based on relative gain and priority [J]. CIESC Journal, 2022, 73(3): 1280-1290. |
[15] | Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU [J]. CIESC Journal, 2022, 73(3): 1232-1245. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 252
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||