CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4461-4471.DOI: 10.11949/0438-1157.20220883
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jun HUANG1(), Yiliang LIU2, Peng WU2, Kai SHEN2, Yaping ZHANG2()
Received:
2022-06-24
Revised:
2022-09-09
Online:
2022-11-02
Published:
2022-10-05
Contact:
Yaping ZHANG
通讯作者:
张亚平
作者简介:
黄俊(1970—),男,工程师,huangjun0722@126.com
基金资助:
CLC Number:
Jun HUANG, Yiliang LIU, Peng WU, Kai SHEN, Yaping ZHANG. Poisoning mechanism and antioxidant performance of TiAl-based carbonyl sulfur hydrolysis catalyst[J]. CIESC Journal, 2022, 73(10): 4461-4471.
黄俊, 刘羿良, 吴鹏, 沈凯, 张亚平. TiAl基羰基硫水解催化剂的中毒机制与抗氧性能研究[J]. 化工学报, 2022, 73(10): 4461-4471.
Add to citation manager EndNote|Ris|BibTeX
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm |
---|---|---|---|
新鲜 | 152.42 | 0.26 | 7.48 |
失活 | 71.17 | 0.16 | 8.36 |
Table 1 BET specific surface area and pore properties of fresh and used catalysts
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm |
---|---|---|---|
新鲜 | 152.42 | 0.26 | 7.48 |
失活 | 71.17 | 0.16 | 8.36 |
样品 | 含量/% | ||||||
---|---|---|---|---|---|---|---|
C | O | Al | S | K | Ti | 总量 | |
新鲜 | — | 51.60 | 21.30 | 未检出 | 8.41 | 18.68 | 100 |
失活 | 60.10 | 26.55 | 5.88 | 0.25 | 1.82 | 5.40 | 100 |
Table 2 Surface element content of fresh and used K0.2Ti0.5Al catalyst
样品 | 含量/% | ||||||
---|---|---|---|---|---|---|---|
C | O | Al | S | K | Ti | 总量 | |
新鲜 | — | 51.60 | 21.30 | 未检出 | 8.41 | 18.68 | 100 |
失活 | 60.10 | 26.55 | 5.88 | 0.25 | 1.82 | 5.40 | 100 |
1 | 孙加亮, 杨伟明, 杜雄伟. 高炉煤气脱硫现状及技术路线分析[J]. 冶金动力, 2020(10): 13-18. |
Sun J L, Yang W M, Du X W. Present situation and technical route analysis of blast furnace gas desulfurization[J]. Metallurgical Power, 2020(10): 13-18. | |
2 | 陈兴业, 向轶, 陈艳艳, 等. 高炉煤气精脱硫工艺路线探究[J]. 中国环保产业, 2021(3): 31-34. |
Chen X Y, Xiang Y, Chen Y Y, et al. Research on the process route of fine desulfurization of blast furnace gas[J]. China Environmental Protection Industry, 2021(3): 31-34. | |
3 | 刘家和. COS常低温脱除技术进展[J]. 广州化工, 2013, 41(19): 22-24, 48. |
Liu J H. Advances of carbonyl sulfide removal at lower and ordinary temperature[J]. Guangzhou Chemical Industry, 2013, 41(19): 22-24, 48. | |
4 | Qiu J, Wang X Q, Ning P, et al. Ambient temperature adsorption of carbonyl sulfide using modified γ-Al2O3 [C]//2013 International Conference on Materials for Renewable Energy and Environment. Chengdu, 2013: 626-629. |
5 | 王红妍, 易红宏, 唐晓龙, 等. 羰基硫脱除技术研究现状及进展[J]. 化学工业与工程, 2010, 27(1): 67-72. |
Wang H Y, Yi H H, Tang X L, et al. Development of carbonyl sulfide removal[J]. Chemical Industry and Engineering, 2010, 27(1): 67-72. | |
6 | 李新学, 刘迎新, 魏雄辉. 羰基硫脱除技术[J]. 现代化工, 2004, 24(8): 19-22. |
Li X X, Liu Y X, Wei X H. Technology for carbonyl sulfide removal[J]. Modern Chemical Industry, 2004, 24(8): 19-22. | |
7 | Wang X Q, Qiu J, Ning P, et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions[J]. Journal of Hazardous Materials, 2012, 229/230: 128-136. |
8 | Wang L, Wang S D, Yuan Q, et al. COS hydrolysis in the presence of oxygen: experiment and modeling[J]. Journal of Natural Gas Chemistry, 2008, 17(1): 93-97. |
9 | 周广林, 王美庆, 王晓胜, 等. NiO/ZnO-Al2O3吸附剂吸附脱除焦炉气中COS[J]. 燃料化学学报, 2015, 43(4): 470-475. |
Zhou G L, Wang M Q, Wang X S, et al. Removal of COS in coke-oven gas by NiO/ZnO-Al2O3 adsorption[J]. Journal of Fuel Chemistry and Technology, 2015, 43(4): 470-475. | |
10 | Kamp E, Thielert H, von Morstein O, et al. Investigation on the simultaneous removal of COS, CS2 and O2 from coke oven gas by hydrogenation on a Pd/Al2O3 catalyst[J]. Catalysis Science & Technology, 2020, 10(9): 2961-2969. |
11 | Huang H M, Young N, Williams B P, et al. COS hydrolysis using zinc-promoted alumina catalysts[J]. Catalysis Letters, 2005, 104(1/2): 17-21. |
12 | Jin H K, An Z Y, Li Q C, et al. Catalysts of ordered mesoporous alumina with a large pore size for low-temperature hydrolysis of carbonyl sulfide[J]. Energy & Fuels, 2021, 35(10): 8895-8908. |
13 | Clark P D, Dowling N I, Huang M. Conversion of CS2 and COS over alumina and titania under Claus process conditions: reaction with H2O and SO2 [J]. Applied Catalysis B: Environmental, 2001, 31(2): 107-112. |
14 | 张文效, 姚润生, 沈炳龙. 精脱硫技术进展及钛基催化剂的应用探索[J]. 煤化工, 2014, 42(5): 6-10, 22. |
Zhang W X, Yao R S, Shen B L. Technical development of fine desulfurization process and applied exploration of Ti-based catalyst[J]. Coal Chemical Industry, 2014, 42(5): 6-10, 22. | |
15 | 林建英, 郭汉贤, 谢克昌. 羰基硫水解催化剂的失活行为研究[J]. 宁夏大学学报(自然科学版), 2001, 22(2): 192-194. |
Lin J Y, Guo H X, Xie K C. Studies on deactivation of carbonyl sulfide hydrolysis catalyst[J]. Journal of Ningxia University (Natural Science Edition), 2001, 22(2): 192-194. | |
16 | 梁丽彤, 上官炬, 樊惠玲, 等. 高浓度COS水解催化剂抗硫中毒性能的孔隙效应[J]. 煤炭学报, 2012, 37(12): 2102-2106. |
Liang L T, Shangguan J, Fan H L, et al. Effects of pore structure on anti-sulfur poisoning of the catalyst for high concentration carbonyl sulfide hydrolysis[J]. Journal of China Coal Society, 2012, 37(12): 2102-2106. | |
17 | 王辉, 谈世韶, 郭汉贤. K2O修饰γ-Al2O3的表面性能研究[J]. 燃料化学学报, 1996, 24(4): 303-308. |
Wang H, Tan S S, Guo H X. Study on surface properties of γ-Al2O3 modified by K2O[J]. Journal of Fuel Chemistry and Technology, 1996, 24(4): 303-308. | |
18 | 马铭宇, 王超, 李运甲, 等. 高炉煤气中羰基硫水解吸附催化剂的制备及性能研究[J]. 化工学报, 2022, 73(1): 275-283. |
Ma M Y, Wang C, Li Y J, et al. Preparation and performance study of catalyst for COS hydrolysis and adsorption in blast furnace gas[J]. CIESC Journal, 2022, 73(1): 275-283. | |
19 | 宋奕慧, 雷志轶, 范国利, 等. 基于LiAl-LDH/C杂化前体制备高比表面固体碱催化剂及其催化性能研究[J]. 化工学报, 2021, 72(6): 3084-3094. |
Song Y H, Lei Z Y, Fan G L, et al. Preparation and property of high specific surface solid base catalyst based on LiAl-LDH /C hybrid precursor[J]. CIESC Journal, 2021, 72(6): 3084-3094. | |
20 | Liu Y L, Wu P, Shen K, et al. Contribution of Na/K doping to the activity and mechanism of low-temperature COS hydrolysis over TiO2-Al2O3 based catalyst in blast furnace gas[J]. ACS Omega, 2022, 7(15): 13299-13312. |
21 | Wang Q, Zeng H, Liang Y H, et al. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals[J]. Chemical Engineering Journal, 2021, 407: 126738. |
22 | Luo Y J, Ou L M, Chen J H, et al. Experimental and DFT study of the sulfidation of smithsonite: impact of water and oxygen[J]. Applied Surface Science, 2022, 592: 153235. |
23 | 张雨萌, 魏征, 张鑫, 等. 氮掺杂锌铝水滑石衍生复合氧化物上羰基硫的催化水解性能[J]. 工业催化, 2020, 28(11): 31-36. |
Zhang Y M, Wei Z, Zhang X, et al. The catalytic hydrolysis performance of carbonyl sulfide over N-doped composite oxides derived from zinc-aluminum hydrotalcite[J]. Industrial Catalysis, 2020, 28(11): 31-36. | |
24 | 吴艳, 李来时, 翟玉春. 硫酸铝晶体热分解行为及分解反应动力学研究[J]. 分子科学学报, 2007, 23(6): 380-384. |
Wu Y, Li L S, Zhai Y C. Thermal behavior and decomposition kinetics of Al2(SO4)3·18H2O[J]. Journal of Molecular Science, 2007, 23(6): 380-384. | |
25 | 郑光亚, 陈正杰, 辜芳, 等. 不同气氛下硫酸铝高温分解热力学分析[J]. 化学研究, 2019, 30(3): 248-253. |
Zheng G Y, Chen Z J, Gu F, et al. Thermodynamic analysis of high temperature decomposition of aluminum sulfate in different atmospheres[J]. Chemical Research, 2019, 30(3): 248-253. | |
26 | Wei Z, Zhang X, Zhang F L, et al. Boosting carbonyl sulfide catalytic hydrolysis performance over N-doped Mg-Al oxide derived from MgAl-layered double hydroxide[J]. Journal of Hazardous Materials, 2021, 407: 124546. |
27 | 刘俊锋, 刘永春, 薛莉, 等. Al2O3上羰基硫常温催化水解的氧中毒机理[J]. 物理化学学报, 2007, 23(7): 997-1002. |
Liu J F, Liu Y C, Xue L, et al. Oxygen poisoning mechanism of catalytic hydrolysis of OCS over Al2O3 at room temperature[J]. Acta Physico-Chimica Sinica, 2007, 23(7): 997-1002. | |
28 | Toops T J, Crocker M. New sulfur adsorbents derived from layered double hydroxides(Ⅱ): DRIFTS study of COS and H2S adsorption[J]. Applied Catalysis B: Environmental, 2008, 82(3/4): 199-207. |
29 | Du H, Williams C T, Ebner A D, et al. In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc[J]. Chemistry of Materials, 2010, 22(11): 3519-3526. |
30 | Hill I M, Hanspal S, Young Z D, et al. DRIFTS of probe molecules adsorbed on magnesia, zirconia, and hydroxyapatite catalysts[J]. The Journal of Physical Chemistry C, 2015, 119(17): 9186-9197. |
31 | 焦熙, 董庆年, 李洪广, 等. 钾镁铝氧化物上CO2吸脱附过程的漫反射红外光谱研究[C]//第十八届全国分子光谱学学术会议. 苏州, 2014: 189-190. |
Jiao X, Dong Q N, Li H G, et al. DRIFTS study of CO2 adsorption/desorption process in KMgAl(O)[C]// The 18th National Symposium of Molecular Spectroscopy and Spectral Analysis. Suzhou, 2014: 189-190. | |
32 | Laperdrix E, Sahibed-dine A, Costentin G, et al. Reduction of sulfate species by H2S on different metal oxides and promoted aluminas[J]. Applied Catalysis B: Environmental, 2000, 26(2): 71-80. |
[1] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[2] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[3] | Xueke LIU,Li ZHANG,Fen LIU,Shuaitao GAO,Jiang YU,Jianfeng SHANG,Tianxiong OU,Zheng ZHOU,Pingwen CHEN. Catalytic hydrolysis of carbonyl sulfide with application of NHD/MDEA/H2O [J]. CIESC Journal, 2020, 71(11): 5286-5293. |
[4] | HUANG Minhui, BAO Zongbi, DUAN Shuran, XING Huabin, YANG Yiwen, REN Qilong. Optimization of acid hydrolysis for preparing L-arabinose from Gum Arabic [J]. CIESC Journal, 2015, 66(7): 2528-2533. |
[5] | LIU Tao,LI Lijun,HUANG Wenyi,LIU Liu. Solid superacid catalyst SO42?/ Kaolin for preparation of levulinic acid [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1300-1306. |
[6] | WANG Lianbang, ZHAN Xingyue, YANG Zhenzhen, MA Chunan. Catalytic Hydrolysis of Borohydride for Fuel Cells [J]. , 2011, 19(4): 693-697. |
[7] | REN Xiaoguang,LI Ziyan,WANG Xueqian,CHEN Wei,BAI Yangwei,JIANG Ming,SUN Baiyu. Treatment of COS by modified activated carbon under low-oxygen content conditions [J]. , 2011, 30(2): 425-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||