CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4472-4483.DOI: 10.11949/0438-1157.20220696
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xiujuan SHI(), Wenjun LIANG(), Guobin YIN, Jinzhu WANG
Received:
2022-05-16
Revised:
2022-07-08
Online:
2022-11-02
Published:
2022-10-05
Contact:
Wenjun LIANG
通讯作者:
梁文俊
作者简介:
石秀娟(1991—),女,博士研究生,shixiujuan@emails.bjut.edu.cn
基金资助:
CLC Number:
Xiujuan SHI, Wenjun LIANG, Guobin YIN, Jinzhu WANG. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst[J]. CIESC Journal, 2022, 73(10): 4472-4483.
石秀娟, 梁文俊, 尹国彬, 王金柱. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报, 2022, 73(10): 4472-4483.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 比表面积SBET/(m2/g) | 总孔容Vp/(cm3/g) | 平均孔径dp/nm |
---|---|---|---|
γ-Al2O3(反应前) | 257 | 0.48 | 7.55 |
γ-Al2O3(反应后) | 265 | 0.49 | 7.33 |
MnO x (MN)/γ-Al2O3(反应前) | 236 | 0.45 | 7.79 |
MnO x (MN)/γ-Al2O3(反应后) | 240 | 0.47 | 7.64 |
MnO x (MA)/γ-Al2O3(反应前) | 238 | 0.45 | 7.61 |
MnO x (MA)/γ-Al2O3(反应后) | 249 | 0.46 | 7.39 |
Table 1 Specific surface area, pore volume and pore diameter of different catalysts before and after reaction
催化剂 | 比表面积SBET/(m2/g) | 总孔容Vp/(cm3/g) | 平均孔径dp/nm |
---|---|---|---|
γ-Al2O3(反应前) | 257 | 0.48 | 7.55 |
γ-Al2O3(反应后) | 265 | 0.49 | 7.33 |
MnO x (MN)/γ-Al2O3(反应前) | 236 | 0.45 | 7.79 |
MnO x (MN)/γ-Al2O3(反应后) | 240 | 0.47 | 7.64 |
MnO x (MA)/γ-Al2O3(反应前) | 238 | 0.45 | 7.61 |
MnO x (MA)/γ-Al2O3(反应后) | 249 | 0.46 | 7.39 |
催化剂 | 结合能/eV | Mn4+/Mn3+ | 结合能 /eV | Olatt/Oads | ||
---|---|---|---|---|---|---|
Mn4+ | Mn3+ | Olatt | Oads | |||
MnO x (MN)/γ-Al2O3 | 643.7 | 641.7 | 0.77 | 529.2 | 530.6 | 2.56 |
MnO x (MA)/γ-Al2O3 | 643.7 | 641.7 | 0.88 | 529.3 | 530.8 | 3.91 |
Table 2 XPS characterization results of fresh Mn based catalysts prepared from different precursors
催化剂 | 结合能/eV | Mn4+/Mn3+ | 结合能 /eV | Olatt/Oads | ||
---|---|---|---|---|---|---|
Mn4+ | Mn3+ | Olatt | Oads | |||
MnO x (MN)/γ-Al2O3 | 643.7 | 641.7 | 0.77 | 529.2 | 530.6 | 2.56 |
MnO x (MA)/γ-Al2O3 | 643.7 | 641.7 | 0.88 | 529.3 | 530.8 | 3.91 |
1 | Lyu X P, Guo H, Wang Y, et al. Hazardous volatile organic compounds in ambient air of China[J]. Chemosphere, 2020, 246: 125731. |
2 | Liu B Y, Ji J, Zhang B G, et al. Catalytic ozonation of VOCs at low temperature: a comprehensive review[J]. Journal of Hazardous Materials, 2022, 422: 126847. |
3 | Chang T, Ma C L, Shen Z X, et al. Mn-based catalysts for post non-thermal plasma catalytic abatement of VOCs: a review on experiments, simulations and modeling[J]. Plasma Chemistry and Plasma Processing, 2021, 41(5): 1239-1278. |
4 | Lin F W, Zhang Z M, Li N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation[J]. Chemical Engineering Journal, 2021, 404: 126534. |
5 | Zhang S H, You J P, Kennes C, et al. Current advances of VOCs degradation by bioelectrochemical systems: a review[J]. Chemical Engineering Journal, 2018, 334: 2625-2637. |
6 | Qian Y, Yin D Q, Li Y, et al. Effects of four chlorobenzenes on serum sex steroids and hepatic microsome enzyme activities in crucian carp, Carassius auratus [J]. Chemosphere, 2004, 57(2): 127-133. |
7 | Hu Y X, Zhou Y, Yang Z, et al. Adsorption kinetics of gaseous chlorobenzene on electrospun lignin-based nanofiber[J]. Journal of Materials Science, 2022, 57(2): 1536-1544. |
8 | Liang W J, Zhu Y X, Ren S D, et al. Catalytic combustion of chlorobenzene at low temperature over Ru-Ce/TiO2: high activity and high selectivity[J]. Applied Catalysis A: General, 2021, 623: 118257. |
9 | Zhang M J, Lu J, Zhu C Z, et al. Photocatalytic degradation of gaseous benzene with Bi2WO6/palygorskite composite catalyst[J]. Solid State Sciences, 2019, 90: 76-85. |
10 | Li B, Yuan D C, Ma L P, et al. Efficient combustion of chlorinated volatile organic compounds driven by natural sunlight[J]. Science of the Total Environment, 2020, 749: 141595. |
11 | Deng W, Tang Q X, Huang S S, et al. Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides[J]. Applied Catalysis B: Environmental, 2020, 278: 119336. |
12 | Li S J, Yu X, Dang X Q, et al. Non-thermal plasma coupled with MO x /γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: analysis of byproducts and the reaction mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. |
13 | Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5-WO3/TiO2 catalyst: the effect of heavy metal Pb[J]. Journal of Hazardous Materials, 2020, 387: 121705. |
14 | 姚水良, 章旭明, 陆豪. 低温等离子体净化挥发性有机物关键技术[J]. 高电压技术, 2020, 46(1): 342-350. |
Yao S L, Zhang X M, Lu H. Key technologies of purification for volatile-organic-compounds using non-thermal plasma[J]. High Voltage Engineering, 2020, 46(1): 342-350. | |
15 | Han F L, Li M Y, Zhong H R, et al. Product analysis and mechanism of toluene degradation by low temperature plasma with single dielectric barrier discharge[J]. Journal of Saudi Chemical Society, 2020, 24(9): 673-682. |
16 | Chang Z S, Wang C, Zhang G J. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers, 2020, 17(4): 1900131. |
17 | Nguyen V T, Nguyen D B, Heo I, et al. Efficient degradation of styrene in a nonthermal plasma–catalytic system over Pd/ZSM-5 catalyst[J]. Plasma Chemistry and Plasma Processing, 2020, 40(5): 1207-1220. |
18 | 夏诗杨, 米俊锋, 杜胜男, 等. 低温等离子体处理挥发性有机物的研究进展[J]. 应用化工, 2021, 50(4): 1130-1135. |
Xia S Y, Mi J F, Du S N, et al. Research progress of non-thermal plasma treatment of volatile organic compounds[J]. Applied Chemical Industry, 2021, 50(4): 1130-1135. | |
19 | 赵亚飞, 叶凯, 庄烨, 等. 锰基催化剂协同等离子降解VOCs研究进展[J]. 化工进展, 2020, 39(S2): 175-184. |
Zhao Y F, Ye K, Zhuang Y, et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. | |
20 | Yao X H, Zhang J, Liang X Y, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system[J]. Chemosphere, 2019, 230: 479-487. |
21 | Chang T, Shen Z X, Huang Y, et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal, 2018, 348: 15-25. |
22 | Sivachandiran L, Thevenet F, Rousseau A. Isopropanol removal using Mn x O y packed bed non-thermal plasma reactor: comparison between continuous treatment and sequential sorption/regeneration[J]. Chemical Engineering Journal, 2015, 270: 327-335. |
23 | Liu Y, Lian L P, Zhao W X, et al. DBD coupled with MnO x /γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 034016. |
24 | Rezaei E, Soltan J. Low temperature oxidation of toluene by ozone over MnO x /γ-alumina and MnO x /MCM-41 catalysts[J]. Chemical Engineering Journal, 2012, 198/199: 482-490. |
25 | 张硕, 梁吉艳, 沈欣军, 等. DDBD协同MnO x 催化氧化降解低浓度甲苯[J]. 环境工程, 2019, 37(10): 148-152. |
Zhang S, Liang J Y, Shen X J, et al. Catalytic oxidation of dilute toluene using DDBD-assisted MnO x [J]. Environmental Engineering, 2019, 37(10): 148-152. | |
26 | Wang L, He H, Zhang C B, et al. Effects of precursors for manganese-loaded γ-Al2O3 catalysts on plasma-catalytic removal of o-xylene[J]. Chemical Engineering Journal, 2016, 288: 406-413. |
27 | Jose J, Philip L. Degradation of chlorobenzene in aqueous solution by pulsed power plasma: mechanism and effect of operational parameters[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103476. |
28 | He F, Jiao Y M, Wu L Y, et al. Enhancement mechanism of Sn on the catalytic performance of Cu/KIT-6 during the catalytic combustion of chlorobenzene[J]. Catalysis Science & Technology, 2019, 9(21): 6114-6123. |
29 | 梁文俊, 郭书清, 武红梅, 等. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017, 68(7): 2755-2762. |
Liang W J, Guo S Q, Wu H M, et al. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3 catalysts[J]. CIESC Journal, 2017, 68(7): 2755-2762. | |
30 | Vandenbroucke A M, Morent R, de Geyter N, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. |
31 | Kim H H, Ogata A, Futamura S. Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 984-995. |
32 | Wang T, Chen S, Wang H Q, et al. In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism[J]. Chinese Journal of Catalysis, 2017, 38(5): 793-803. |
33 | Huang H, Chen C W, Yang R, et al. Remarkable promotion effect of lauric acid on Mn-MIL-100 for non-thermal plasma-catalytic decomposition of toluene[J]. Applied Surface Science, 2020, 503: 144290. |
34 | Guo F, Xu J Q, Chu W. CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma[J]. Catalysis Today, 2015, 256: 124-129. |
35 | Liang C F, Hu X, Wei T, et al. Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: impacts of oxygen vacancies on catalytic activity[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8197-8213. |
36 | 叶凯, 刘香华, 姜月, 等. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
Ye K, Liu X H, Jiang Y, et al. Combing low-temperature plasma with CeO2/13X for toluene degradation[J]. CIESC Journal, 2021, 72(7): 3706-3715. | |
37 | 朱丽华, 徐锋, 高宏亮, 等. 等离子体改性对CuO/ZrO2催化乏风瓦斯燃烧的影响[J]. 黑龙江科技大学学报, 2017, 27(4): 443-447. |
Zhu L H, Xu F, Gao H L, et al. Effect of plasma treatment on performance of CuO/ZrO2 catalyst in combustion of ventilation air methane[J]. Journal of Heilongjiang University of Science and Technology, 2017, 27(4): 443-447. | |
38 | Zhang H, Chu W, Xu H Y, et al. Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation[J]. Fuel, 2010, 89(10): 3127-3131. |
39 | He D D, Hao H S, Chen D K, et al. Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition[J]. Catalysis Today, 2017, 281: 559-565. |
40 | Tang X F, Li Y G, Huang X M, et al. MnO x -CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature[J]. Applied Catalysis B: Environmental, 2006, 62(3/4): 265-273. |
41 | Zhang C B, Liu F D, Zhai Y P, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie, 2012, 124(38): 9766-9770. |
42 | Maciuca A, Batiot-Dupeyrat C, Tatibouët J M. Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air[J]. Applied Catalysis B: Environmental, 2012, 125: 432-438. |
43 | Wang M X, Zhang P Y, Li J G, et al. The effects of Mn loading on the structure and ozone decomposition activity of MnO x supported on activated carbon[J]. Chinese Journal of Catalysis, 2014, 35(3): 335-341. |
44 | 梁文俊, 孙慧频, 朱玉雪, 等. 低温等离子体协同催化降解甲苯生成副产物臭氧的影响因素[J]. 化工进展, 2020, 39(7): 2893-2899. |
Liang W J, Sun H P, Zhu Y X, et al. Ozone formation in toluene degradation by plasma assisted catalysis[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2893-2899. |
[1] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[2] | Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance [J]. CIESC Journal, 2022, 73(7): 3193-3201. |
[3] | Fan WANG, Yanbo LIU, Kangli LI, Li TONG, Meitang JIN, Weiwei TANG, Mingyang CHEN, Junbo GONG. Research progress on mesoscale nucleation process in solution crystallization [J]. CIESC Journal, 2022, 73(6): 2318-2333. |
[4] | Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation [J]. CIESC Journal, 2022, 73(4): 1732-1742. |
[5] | Qianhao WANG, Lu ZHAO, Fulin SUN, Kegong FANG. Production of syngas derived from H2S-CO2via synergy of ZSM-5 catalyst and non-thermal plasma [J]. CIESC Journal, 2022, 73(1): 255-265. |
[6] | Maoqiao XIANG, Yuqi GENG, Qingshan ZHU. Research advances in preparation technology and quality of silicon nitride powder [J]. CIESC Journal, 2022, 73(1): 73-84. |
[7] | Zeyan LI, Xing FAN, Jian LI. Non-thermal plasma enhanced hydrolysis of urea decomposition by-products over TiO2 [J]. CIESC Journal, 2021, 72(9): 4698-4707. |
[8] | Liting HUANG, Xushen HAN, Yan JIN, Qiang MA, Jianguo YU. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment [J]. CIESC Journal, 2021, 72(9): 4881-4891. |
[9] | SONG Yihui, LEI Zhiyi, FAN Guoli, YANG Lan, LIN Yanjun, LI Feng. Preparation and property of high specific surface solid base catalyst based on LiAl-LDH /C hybrid precursor [J]. CIESC Journal, 2021, 72(6): 3084-3094. |
[10] | Wenjun LIANG, Yuxue ZHU, Xiujuan SHI, Huipin SUN, Sida REN. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts [J]. CIESC Journal, 2020, 71(8): 3585-3593. |
[11] | Wenqiang GAO, Weizhou JIAO, Youzhi LIU. Oxidation of toluene to benzoic acid by O3/H2O2 process enhanced usinghigh-gravity technology [J]. CIESC Journal, 2020, 71(3): 1045-1052. |
[12] | Baowei WANG, Huijuan SU, Shumei YAO. Preparation of O3 by O2 DBD microplasma [J]. CIESC Journal, 2020, 71(2): 746-754. |
[13] | Jing ZHAO, Yufeng ZHANG, Xiaolin WEI, Teng LI, Feng BIN. PM1 formation characteristics during high-alkali coal combustion [J]. CIESC Journal, 2019, 70(8): 3113-3120. |
[14] | Ke FENG, Yue WANG, Jinhua LI, Xueying CHU, Siyi HU, Zhiyuan LIN. Regulation of Cd2+ precursor reaction time on aspect ratio of CdSe quantum rod and its optical properties [J]. CIESC Journal, 2019, 70(7): 2795-2801. |
[15] | Lihong WEI, Liangzhen GUO, Jinyuan JIANG, Meijia LIU, Tianhua YANG. Influence of Fe2O3 on glycine pyrolysis characteristics and nitrogen conversion [J]. CIESC Journal, 2019, 70(5): 1942-1950. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||