CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4410-4418.DOI: 10.11949/0438-1157.20221034
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuxian XIE1(), Tao LIU1, Sheng SU1(), Lijun LIU2, Yuxiu ZHONG1, Zhiwei MA1, Kai XU1, Yi WANG1, Song HU1, Jun XIANG1
Received:
2022-07-26
Revised:
2022-09-21
Online:
2022-11-02
Published:
2022-10-05
Contact:
Sheng SU
谢玉仙1(), 刘涛1, 苏胜1(), 刘利军2, 钟毓秀1, 马智伟1, 许凯1, 汪一1, 胡松1, 向军1
通讯作者:
苏胜
作者简介:
谢玉仙(1997—),女,硕士研究生,z_xieyuxian@163.com
基金资助:
CLC Number:
Yuxian XIE, Tao LIU, Sheng SU, Lijun LIU, Yuxiu ZHONG, Zhiwei MA, Kai XU, Yi WANG, Song HU, Jun XIANG. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts[J]. CIESC Journal, 2022, 73(10): 4410-4418.
谢玉仙, 刘涛, 苏胜, 刘利军, 钟毓秀, 马智伟, 许凯, 汪一, 胡松, 向军. 工业窑炉烟气氧含量对钒钛系催化剂NH3-SCR脱硝反应的影响[J]. 化工学报, 2022, 73(10): 4410-4418.
Add to citation manager EndNote|Ris|BibTeX
催化剂 | 比表面积/(m2/g) |
---|---|
1VTi | 39.93 |
1VTi-无氧 | 39.54 |
1VTi-4%O2 | 39.87 |
1VTi-15%O2 | 39.99 |
2.5VTi | 41.99 |
2.5VTi-无氧 | 41.88 |
2.5VTi-4%O2 | 41.92 |
2.5VTi-15%O2 | 42.27 |
4VTi | 42.19 |
4VTi-无氧 | 42.32 |
4VTi-4%O2 | 42.37 |
4VTi-15%O2 | 42.07 |
Table 1 BET surface area of the catalysts before and after reaction
催化剂 | 比表面积/(m2/g) |
---|---|
1VTi | 39.93 |
1VTi-无氧 | 39.54 |
1VTi-4%O2 | 39.87 |
1VTi-15%O2 | 39.99 |
2.5VTi | 41.99 |
2.5VTi-无氧 | 41.88 |
2.5VTi-4%O2 | 41.92 |
2.5VTi-15%O2 | 42.27 |
4VTi | 42.19 |
4VTi-无氧 | 42.32 |
4VTi-4%O2 | 42.37 |
4VTi-15%O2 | 42.07 |
催化剂 | 结合能/eV | V5+/ (V5++V4+) | Oα/ (Oα+Oβ) | |||
---|---|---|---|---|---|---|
V5+ | V4+ | Oα | Oβ | |||
新鲜的1VTi | 516.26 | 515.47 | 531.50 | 529.70 | 0.56 | 0.07 |
1VTi-无氧 | 516.39 | 515.52 | 531.50 | 529.73 | 0.56 | 0.07 |
1VTi-4%O2 | 516.24 | 515.47 | 531.50 | 529.77 | 0.63 | 0.10 |
1VTi-15%O2 | 516.37 | 515.44 | 531.50 | 529.65 | 0.64 | 0.10 |
新鲜的2.5VTi | 516.87 | 515.92 | 531.50 | 529.76 | 0.60 | 0.10 |
2.5VTi-无氧 | 517.13 | 516.16 | 531.50 | 529.97 | 0.60 | 0.10 |
2.5VTi-4%O2 | 516.85 | 515.90 | 531.50 | 529.80 | 0.66 | 0.14 |
2.5VTi-15%O2 | 516.99 | 515.96 | 531.50 | 529.88 | 0.68 | 0.16 |
Table 2 XPS results of different catalysts before and after reaction
催化剂 | 结合能/eV | V5+/ (V5++V4+) | Oα/ (Oα+Oβ) | |||
---|---|---|---|---|---|---|
V5+ | V4+ | Oα | Oβ | |||
新鲜的1VTi | 516.26 | 515.47 | 531.50 | 529.70 | 0.56 | 0.07 |
1VTi-无氧 | 516.39 | 515.52 | 531.50 | 529.73 | 0.56 | 0.07 |
1VTi-4%O2 | 516.24 | 515.47 | 531.50 | 529.77 | 0.63 | 0.10 |
1VTi-15%O2 | 516.37 | 515.44 | 531.50 | 529.65 | 0.64 | 0.10 |
新鲜的2.5VTi | 516.87 | 515.92 | 531.50 | 529.76 | 0.60 | 0.10 |
2.5VTi-无氧 | 517.13 | 516.16 | 531.50 | 529.97 | 0.60 | 0.10 |
2.5VTi-4%O2 | 516.85 | 515.90 | 531.50 | 529.80 | 0.66 | 0.14 |
2.5VTi-15%O2 | 516.99 | 515.96 | 531.50 | 529.88 | 0.68 | 0.16 |
1 | 王赫婧, 吴琼, 白璐, 等. 工业炉窑典型大气污染物“十四五”减排潜力研究[J]. 环境科学研究, 2020, 33(12): 2647-2656. |
Wang H J, Wu Q, Bai L, et al. Analysis of the typical air pollutants emission reduction potential of non-key industries furnaces in the ‘14th five-year plan'[J]. Research of Environmental Sciences, 2020, 33(12): 2647-2656. | |
2 | Sjovall H, Blint R J, Gopinath A, et al. A kinetic model for the selective catalytic reduction of NO x with NH3 over an fezeolite catalyst[J]. Industrial & Engineering Chemistry Research, 2010, 49(1):39-52. |
3 | Nova I, Colombo M, Tronconi E. Development of chemically consistent models of NH3-SCR reactions over Fe-zeolite catalysts for the after treatment of diesel engine exhausts[J]. IFAC Proceedings Volumes, 2012, 45(30): 384-391. |
4 | Nova I. Mechanistic kinetic modeling of no oxidation over a commercial Cu-zeolite catalyst for diesel exhaust after treatment[J]. Catalysis Today, 2012, 197: 243-255. |
5 | 孟鹏通, 范超, 吕文婷, 等. 整体式堇青石负载的Cu-SSZ-13分子筛催化剂的制备及其氨选择性催化还原脱硝性能[J]. 燃料化学学报, 2020, 48(10): 1216-1223. |
Meng P T, Fan C, Lü W T, et al. Preparation of monolithic cordierite supported Cu-SSZ-13 catalyst and its performance in the selective catalytic reduction of NO x with NH3 [J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1216-1223. | |
6 | Chang H Z, Li J H, Yuan J, et al. Ge, Mn-doped CeO2-WO3 catalysts for NH3-SCR of NO x : effects of SO2 and H2 regeneration[J]. Catalysis Today, 2013, 201: 139-144. |
7 | Liu L J, Su S, Chen D Z, et al. Highly efficient NH3-SCR of NO x over MnFeW/Ti catalyst at low temperature: SO2 tolerance and reaction mechanism[J]. Fuel, 2022, 307: 121805. |
8 | 闫东杰, 李亚静, 玉亚, 等. 碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响[J]. 燃料化学学报, 2018, 46(12): 1513-1519. |
Yan D J, Li Y J, Yu Y, et al. Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1513-1519. | |
9 | 邱金鑫, 何军海, 李文新. 烧结机尾气脱硝(升温+SCR)消白应用实践[J]. 河北冶金, 2019(S1): 114-121. |
Qiu J X, He J H, Li W X. Application of exhaust gas denitrification (warming+SCR) dewhitening of sintering machine[J]. Hebei Metallurgy, 2019(S1): 114-121. | |
10 | 李俊杰, 牟洋, 杨娟, 等. 负载型钒钛脱硝催化剂酸化处理与性能[J]. 化工学报, 2013, 64(4): 1249-1255. |
Li J J, Mu Y, Yang J, et al. Properties of sulfation supported V/Ti denitration catalyst[J]. CIESC Journal, 2013, 64(4): 1249-1255. | |
11 | 邹鹏. 钒钛SCR烟气脱硝催化剂改性研究[D]. 济南: 山东大学, 2012. |
Zou P. Study on modification of V2O5/TiO2 catalyst in SCR flue gas denitrification[D]. Jinan: Shandong University, 2012. | |
12 | 刁勤超. 钒钛催化剂(V2O5-WO3/TiO2)的低温NH3-SCR性能改性[D]. 合肥: 合肥工业大学, 2019. |
Diao Q C. Low temperature NH3-SCR performance modification of vanadium titanium catalyst (V2O5-WO3/TiO2)[D]. Hefei: Hefei University of Technology, 2019. | |
13 | 曹政. 改性钒钛催化剂低温催化还原NO x 性能研究[D]. 湘潭: 湘潭大学, 2011. |
Cao Z. Catalytic reduction of NO by NH3 over modified vanadia-titania catalyst at low temperature[D]. Xiangtan: Xiangtan University, 2011. | |
14 | 吴撼明, 张浩浩, 高兰君, 等. V-W-Ti-Si/堇青石催化剂柴油机脱硝反应动力学[J]. 化学反应工程与工艺, 2017, 33(3): 199-204. |
Wu H M, Zhang H H, Gao L J, et al. Intrinsic kinetics of V-W-Ti-Si/cordierite catalyst for diesel engine denitrification[J]. Chemical Reaction Engineering and Technology, 2017, 33(3): 199-204. | |
15 | Liu L J, Su S, Xu K, et al. Insights into the highly efficient Co modified MnSm/Ti catalyst for selective catalytic reduction of NO x with NH3 at low temperature[J]. Fuel, 2019, 255: 115798. |
16 | 汤常金, 孙敬方, 董林. 超低温(<150℃)SCR脱硝技术研究进展[J]. 化工学报, 2020, 71(11): 4873-4884. |
Tang C J, Sun J F, Dong L. Recent progress on elimination of NO x from flue gas via SCR technology under ultra-low temperatures(150℃)[J]. CIESC Journal, 2020, 71(11): 4873-4884. | |
17 | 尹子骏, 苏胜, 卿梦霞, 等. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596-2603. |
Yin Z J, Su S, Qing M X, et al. Study on SO3 formation characteristics of a typical vanadium titanium SCR catalyst[J]. CIESC Journal, 2021, 72(5): 2596-2603. | |
18 | Chen Z Y, Wu X M, Ni K W, et al. Molybdenum-decorated V2O5-WO3/TiO2: surface engineering toward boosting the acid cycle and redox cycle of NH3-SCR[J]. Catalysis Science & Technology, 2021, 11(5): 1746-1757. |
19 | Michalow-Mauke K A, Lu Y, Kowalski K, et al. Flame-made WO3/CeO x ‑TiO2 catalysts for selective catalytic reduction of NO x by NH3 [J]. ACS Catalysis, 2015, 5: 5657-5672. |
20 | Liu S S, Wang H, Wei Y, et al. Morphology-oriented ZrO2-supported vanadium oxide for the NH3-SCR process: importance of structural and textural properties[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22240-22254. |
21 | Liu Z M, Li Y, Zhu T L, et al. Selective catalytic reduction of NO x by NH3 over Mn-promoted V2O5/TiO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(33):12964-12970. |
22 | Liu Z M, Zhang S X, Li J H, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2014, 158/159: 11-19. |
23 | Hu G, Yang J, Tian Y M, et al. Effect of Ce doping on the resistance of Na over V2O5-WO3/TiO2 SCR catalysts[J]. Materials Research Bulletin, 2018, 104: 112-118. |
24 | Liu F D, He H, Ding Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204. |
25 | 张铁军, 李坚, 何洪, 等. 锑掺杂对钒钛系催化剂低温脱硝活性的影响[J]. 燃料化学学报, 2017, 45(6): 740-746. |
Zhang T J, Li J, He H, et al. Effect of antimony doped vanadium-titanium catalyst on low-temperature NH3-SCR activity[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 740-746. | |
26 | Wu X M, Yu X L, Huang Z W, et al. MnO x -decorated VO x /CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2020, 268: 118419. |
27 | Chen L, Li J, Ge M. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NO x with NH3 [J]. Environmental Science & Technology, 2010, 44(24): 9590-9596. |
28 | Liu Y, Gu T T, Weng X L, et al. DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO2 catalysts for low-temperature NO reduction with NH3 [J]. The Journal of Chemical Physics, 2012, 116: 16582-16592. |
29 | Trovarelli A. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews, 1996, 38(4): 439-520. |
30 | Wu Z B, Jiang B Q, Liu Y, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Environmental Science & Technology, 2007, 41(16): 5812-5817 |
[1] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[2] | Wei ZHOU, Fuye WANG, Ning HE, Haibin YU, Xinbin MA, Jiaxu LIU. Study on the relationship of active centers and catalytic performance of Cu/SSZ-13 for NH3-SCR [J]. CIESC Journal, 2022, 73(2): 672-680. |
[3] | Ju WANG, Shufeng NIU, Ying FEI, Hong QI. Fabrication and stability of GO/Al2O3 composite nanofiltration membranes [J]. CIESC Journal, 2020, 71(6): 2795-2803. |
[4] | Anyu LI, Shuangli LI, Bige YU, Aiying MA, Xinlan ZHOU, Jianhui XIE, Yanhong JIANG, Hua DENG. Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar: preparation optimization and adsorption mechanism [J]. CIESC Journal, 2020, 71(4): 1683-1695. |
[5] | Baohong LI, Jiwen LI. New method for heat exchanger network retrofit using heat exchanger load diagram [J]. CIESC Journal, 2020, 71(3): 1288-1296. |
[6] | Xiaoyan LUO, Congcong DAI, Tiedong CHENG, Gaipin CAI, Xin LIU, Jishun LIU. Load identification method of ball mill based on improved EWT multi-scale entropy and KELM [J]. CIESC Journal, 2020, 71(3): 1264-1277. |
[7] | Panpan HAO,Jian LIU,Mingjiang XIE,Xuan WANG,Shanyong CHEN,Weiping DING,Xuefeng GUO. Surrounded catalysts: concept, design and catalytic performance [J]. CIESC Journal, 2020, 71(11): 4957-4963. |
[8] | Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping [J]. CIESC Journal, 2019, 70(S1): 150-157. |
[9] | Cheng YANG, Kexin WANG, Zhijiang SHAO, Xiaojin HUAN. An adaptive MA algorithm for significant load changes in HTR-PM [J]. CIESC Journal, 2019, 70(6): 2211-2220. |
[10] | Weiwei SHEN, Daoming DENG, Qiaoping LIU, Jing GONG. Prediction model of critical gas velocities in gas wells based on annular mist flow theory [J]. CIESC Journal, 2019, 70(4): 1318-1330. |
[11] | Gaipin CAI, Lu ZONG, Xin LIU, Xiaoyan LUO. Load identification method of ball mill based on MEEMD- multi-scale fractal box dimension and ELM [J]. CIESC Journal, 2019, 70(2): 764-771. |
[12] | LU Nianci, WANG Ruixiang, MA Qingyang. Transient simulation of steam discharge with differeat load [J]. CIESC Journal, 2018, 69(S2): 283-290. |
[13] | CHEN Taoqiang, LI Ning, WEI Guanghua, GAO Yifeng, LIU Ben, HUANGFU Lixia, GUO Kaihua. Influence of load characteristic on economic operation of LNG receiving terminal [J]. CIESC Journal, 2018, 69(S2): 436-441. |
[14] | ZHOU Pengfei, ZHANG Zhentao, ZHANG Xuelai, YANG Luwei, WEI Juan, LIU Pengpeng. Application analysis of low temperature heat pump heating during heat pump drying [J]. CIESC Journal, 2018, 69(5): 2032-2039. |
[15] | DU Yonggui, LI Sisi, YAN Gaowei, CHENG Lan. Soft sensor of wet ball mill load parameter based on domain adaptation with manifold regularization [J]. CIESC Journal, 2018, 69(3): 1244-1251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||