CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 265-271.DOI: 10.11949/0438-1157.20221521
• Energy and environmental engineering • Previous Articles Next Articles
Qihong ZOU(), Qian LI, Tianshu GE()
Received:
2022-10-22
Revised:
2022-11-22
Online:
2023-09-27
Published:
2023-06-05
Contact:
Tianshu GE
通讯作者:
葛天舒
作者简介:
邹启宏(1998—),男,硕士,qihongzou@stju.edu.cn
基金资助:
CLC Number:
Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives[J]. CIESC Journal, 2023, 74(S1): 265-271.
邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271.
部件 | 类型 | 设计功耗/kW | 型号 |
---|---|---|---|
压缩机 | 变频转子 | 2 | WHP03240BSKNB7AT |
电子膨胀阀 | 变频 | 1/2 | DPF(T01)1.3C-07 |
四通阀 | 3 | SHF(L)-4H-23U-52 | |
板式换热器 | 钎焊式 | 4/5 | B3-020 |
Table 1 Key components of the prototype
部件 | 类型 | 设计功耗/kW | 型号 |
---|---|---|---|
压缩机 | 变频转子 | 2 | WHP03240BSKNB7AT |
电子膨胀阀 | 变频 | 1/2 | DPF(T01)1.3C-07 |
四通阀 | 3 | SHF(L)-4H-23U-52 | |
板式换热器 | 钎焊式 | 4/5 | B3-020 |
参数 | 数值 |
---|---|
管外径/mm | 9.52 |
管内径/mm | 7.85 |
翅片长度/mm | 320.00 |
翅片间距/mm | 2.50 |
翅片厚度/mm | 0.15 |
管列数 | 4 |
管行数 | 12 |
流程 | 2 |
最大横截面积/m2 | 0.096 |
空气侧传热面积/m2 | 6.5 |
Table 2 Structural parameters of the solid desiccant coated heat exchanger
参数 | 数值 |
---|---|
管外径/mm | 9.52 |
管内径/mm | 7.85 |
翅片长度/mm | 320.00 |
翅片间距/mm | 2.50 |
翅片厚度/mm | 0.15 |
管列数 | 4 |
管行数 | 12 |
流程 | 2 |
最大横截面积/m2 | 0.096 |
空气侧传热面积/m2 | 6.5 |
参数 | 数值 |
---|---|
回风温度/℃ | 23 |
回风相对湿度/% | 55 |
处理空气中回风占比/% | 100 |
处理空气风量/(m3/h) | 326 |
蒸发温度/℃ | 15 |
冷凝温度/℃ | 50 |
Table 3 Detailed parameters of experimental conditions
参数 | 数值 |
---|---|
回风温度/℃ | 23 |
回风相对湿度/% | 55 |
处理空气中回风占比/% | 100 |
处理空气风量/(m3/h) | 326 |
蒸发温度/℃ | 15 |
冷凝温度/℃ | 50 |
环境 | 空气湿负荷/W | 空气热负荷/W | 蒸发器热负荷/W | 空气湿负荷占比/% | 空气热负荷占比/% | 蒸发器热负荷占比/% |
---|---|---|---|---|---|---|
23℃ 55% | 188~374 | 401~487 | 0~2950 | 6.7~48 | 17.0~68.1 | 0~76.5 |
26℃ 65% | 322~631 | 395~476 | 0~2083 | 11.5~57 | 16.5~59.7 | 0~74.4 |
17℃ 63% | 203~387 | 297~320 | 0~2312 | 7.2~54.7 | 10.6~61.2 | 0~76.6 |
18℃ 75% | 242~465 | 211~227 | 0~2345 | 8.6~67.2 | 7.5~48.4 | 0~83.8 |
Table 4 System load processing capabilities in different environments
环境 | 空气湿负荷/W | 空气热负荷/W | 蒸发器热负荷/W | 空气湿负荷占比/% | 空气热负荷占比/% | 蒸发器热负荷占比/% |
---|---|---|---|---|---|---|
23℃ 55% | 188~374 | 401~487 | 0~2950 | 6.7~48 | 17.0~68.1 | 0~76.5 |
26℃ 65% | 322~631 | 395~476 | 0~2083 | 11.5~57 | 16.5~59.7 | 0~74.4 |
17℃ 63% | 203~387 | 297~320 | 0~2312 | 7.2~54.7 | 10.6~61.2 | 0~76.6 |
18℃ 75% | 242~465 | 211~227 | 0~2345 | 8.6~67.2 | 7.5~48.4 | 0~83.8 |
1 | 江亿. 我国建筑耗能状况及有效的节能途径[J]. 暖通空调, 2005, 35(5): 30-40. |
Jiang Y. Current building energy consumption in China and effective energy efficiency measures[J]. Heating Ventilating & Air Conditioning. 2005, 35(5): 30-40. | |
2 | 常世钧, 龚光彩. 冷热源及建筑节能的研究现状和进展[J]. 建筑热能通风空调, 2003, 22(5): 18-23. |
Chang S J, Gong G C. Research situation on cool and heat source as well as buliliding energy conservation[J]. Building Energy & Environment, 2003, 22(5): 18-23. | |
3 | 涂耀东, 江宇, 葛天舒, 等. 新型固体吸附除湿空调能耗影响因素分析[J]. 化工学报, 2014, 65(S2): 222-227. |
Tu Y D, Jiang Y, Ge T S, et al. Analysis on impact factors of energy consumption of novel solid adsorptive dehumidification air-condition system[J]. CIESC Journal, 2014, 65(S2): 222-227. | |
4 | 陆繁莉, 葛天舒, 代彦军, 等. 新型半解耦式除湿热泵系统的降温除湿性能[J]. 化工学报, 2018, 69(S2): 55-60. |
Lu F L, Ge T S, Dai Y J, et al. Cooling and dehumidification performance of a novel semi-decoupled solid desiccant heat pump[J]. CIESC Journal, 2018, 69(S2): 55-60 | |
5 | 江宇, 黄溢, 葛天舒, 等. 新型热湿独立控制空调系统的实验研究[J]. 化工学报, 2014, 65(S2): 188-194. |
Jiang Y, Huang Y, Ge T S, et al. Novel temperature and humidity independent control system[J]. CIESC Journal, 2014, 65(S2): 188-194. | |
6 | Jia C X. Analysis on a hybrid desiccant air-conditioning system[J]. Applied Thermal Engineering, 2006, 26(17/18): 2393-2400. |
7 | Zhang L, Hihara E, Saikawa M. Combination of air-source heat pumps with liquid desiccant dehumidification of air[J]. Energy Conversion and Management, 2012, 57: 107-116 |
8 | 刘晓华, 易晓勤, 谢晓云, 等. 基于溶液除湿方式的温湿度独立控制空调系统性能分析[J]. 中国科技论文在线, 2008, 3(7): 469-476. |
Liu X H, Yi X Q, Xie X Y, et al. Performance analysis on liquid desiccant based temperature and humidity independent control air-conditioning system[J]. Sciencepaper Online, 2008, 3(7): 469-476. | |
9 | Dai Y J. Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning[J]. Applied Thermal Engineering, 2001, 21(12): 1185-1202. |
10 | Zhang L. Performance analysis of a no-frost hybrid air conditioning system with integrated liquid desiccant dehumidification[J]. International Journal of Refrigeration, 2010, 33(1): 116-124. |
11 | Niu X, Fu X, Ma Z. Investigation on capacity matching in liquid desiccant and heat pump hybrid air-conditioning systems[J]. International Journal of Refrigeration, 2012, 35(1): 160-170. |
12 | Sheng Y. Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system[J]. Energy, 2015, 83: 583-596. |
13 | Fatouh M, Ibrahim T A, Mostafa A. Experimental investigation on a solid desiccant system integrated with a R407C compression air conditioner[J]. Energy Conversion and Management, 2009, 50(10): 2670-2679. |
14 | Dhar P L. Studies on solid desiccant based hybrid air-conditioning systems[J]. Applied Thermal Engineering, 2001, 21(2): 119-134. |
15 | Fong K F, Lee C K, Chow T T, et al. Investigation on solar hybrid desiccant cooling system for commercial premises with high latent cooling load in subtropical Hong Kong[J]. Applied Thermal Engineering, 2011, 31(16): 3393-3401. |
16 | Hürdoğan E, Büyükalaca O, Yilmaz T, et al. Experimental investigation of a novel desiccant cooling system[J]. Energy and Buildings, 2010, 42(11): 2049-2060. |
17 | Ghali K. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut[J]. Energy Conversion and Management, 2008, 49(11): 3387-3390. |
18 | Angrisani G. Experimental investigation to optimise a desiccant HVAC system coupled to a small size cogenerator[J]. Applied Thermal Engineering, 2011, 31(4): 506-512. |
19 | 涂壤, 刘晓华, 江亿. 不同固体除湿方式的热质交换过程分析及性能比较[J]. 化工学报, 2013, 64(6): 1939-1947. |
Tu R, Liu X H, Jiang Y. Heat and mass transfer analysis and performance comparison for different solid dehumidification methods[J]. CIESC Journal, 2013, 64(6): 1939-1947. | |
20 | 江宇. 基于吸附除湿换热器的热泵系统热力特性研究及其应用[D]. 上海: 上海交通大学, 2016. |
Jiang Y. Thermodynamic study and application on a desiccant coated heat exchanger based heat pump system[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
21 | Li Z, Michiyuki S, Takeshi F. Experimental study on heat and mass transfer characteristics for a desiccant-coated fin-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2015, 89: 641-651. |
22 | Jagirdar M, Lee P S. Mathematical modeling and performance evaluation of a desiccant coated fin-tube heat exchanger[J]. Applied Energy, 2018, 212: 401-415. |
23 | Erkek T U, Gungor A, Fugmann H, et al. Performance evaluation of a desiccant coated heat exchanger with two different desiccant materials[J]. Applied Thermal Engineering, 2018, 143: 701-710. |
24 | Oh S J, Ng K C, Chun W, et al. Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations[J]. Energy, 2017, 137: 441-448. |
25 | Enteria N, Mizutani K, Monma Y, et al. Experimental evaluation of the new solid desiccant heat pump system in Asia-Pacific climatic conditions[J]. Applied Thermal Engineering, 2011, 31(2/3): 243-257. |
26 | Aynur T N, Hwang Y, Radermacher R. Integration of variable refrigerant flow and heat pump desiccant systems for the cooling season[J]. Applied Thermal Engineering, 2010, 30(8/9): 917-927. |
27 | Aynur T N, Hwang Y, Radermacher R. Integration of variable refrigerant flow and heat pump desiccant systems for the heating season[J]. Energy and Buildings, 2010, 42(4): 468-476. |
28 | Tu Y D, Wang R Z, Ge T S, et al. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers[J]. Scientific Reports, 2017, 7: 40437. |
29 | Tu Y D, Wang R Z, Ge T S. New concept of desiccant-enhanced heat pump[J]. Energy Conversion and Management, 2018, 156: 568-574. |
30 | Yang T Y, Ge T S, Lu F L, et al. A novel semi-coupled solid desiccant heat pump system(Part 1): Simulation study[J]. International Journal of Refrigeration, 2020, 120(5/6): 150-160. |
31 | Ge T S, Yang T Y, Lu F L, et al. A novel semi-coupled solid desiccant heat pump system(Part 2): Experimental investigation[J]. International Journal of Refrigeration, 2020, 121: 86-94. |
[1] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[4] | Bowen LEI, Jianhua WU, Qihang WU. Research on high injection superheat cycle for R290 low pressure ratio heat pump [J]. CIESC Journal, 2023, 74(5): 1875-1883. |
[5] | Fang ZHOU, Jian LIU, Xiaosong ZHANG. Selection of ternary zeotropic mixtures for high-temperature heat pumps on multiparameter evaluation principles [J]. CIESC Journal, 2023, 74(11): 4487-4500. |
[6] | Yixiu DONG, Ruzhu WANG. High temperature heat pump: cycle configurations, working fluids and application potentials [J]. CIESC Journal, 2023, 74(1): 133-144. |
[7] | WANG Qianxu, LIU Yicai, LIANG Heng, LI Zheng, ZHAO Xiangle. Impact of defrost falling water on defrost performance of heat exchanger [J]. CIESC Journal, 2021, 72(S1): 356-361. |
[8] | WU Di, HU Bin, WANG Ruzhu, YU Jingjing, LIN Xinyi, LI Ziliang. Theoretical study and performance comparison of different heat pump cycles using water as working fluid [J]. CIESC Journal, 2021, 72(S1): 236-243. |
[9] | LUO Jielin, YANG Kaiyin, ZHAO Zhen, WANG Qin, CHEN Guangming. Heating performance of recuperative heat pump using low-GWP mixed refrigerant [J]. CIESC Journal, 2021, 72(S1): 84-90. |
[10] | Lanping ZHAO, Bentao GUO, Zhigang YANG. Effect of structure on the performance of inner condenser for heat pump of EV [J]. CIESC Journal, 2021, 72(9): 4616-4628. |
[11] | WANG Yubo, QUAN Zhenhua, JING Heran, WANG Lincheng, ZHAO Yaohua. Thermodynamic analysis and operation optimization of multi energy complementary energy storage system [J]. CIESC Journal, 2021, 72(5): 2474-2483. |
[12] | LI Xiaoyu, XU Hongyang, DAI Min, CAI Shanshan. Impact of thermal dispersion on full-scale heat transfer of borehole heat exchangers [J]. CIESC Journal, 2021, 72(5): 2547-2559. |
[13] | LIANG Kunfeng, FENG Changzhen, WANG Moran, DONG Bin, WANG Lin, LIU Ruijian. Advanced exergy analysis of heat pump performance affected by heat transfer matching characteristics of non-azeotropic refrigerants [J]. CIESC Journal, 2021, 72(4): 2038-2046. |
[14] | WANG Dongliang, XIE Jiangpeng, ZHOU Huairong, MENG Wenliang, YANG Yong, LI Delei. Parameters analysis and energy integration in flue gas SO2 capture process based on MDEA [J]. CIESC Journal, 2021, 72(3): 1521-1528. |
[15] | Cheng CHEN, Xin CHEN, Feng XU, Bin WU, Yuanyuan LI, Gui LU. Matter-energy-water coupling mechanism and optimization for zero discharge of desulfurization wastewater from coal-fired units [J]. CIESC Journal, 2021, 72(11): 5800-5809. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 320
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||