CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2211-2220.DOI: 10.11949/j.issn.0438-1157.20181421
• Process system engineering • Previous Articles Next Articles
Cheng YANG1(),Kexin WANG1,Zhijiang SHAO1(),Xiaojin HUAN2
Received:
2018-11-27
Revised:
2019-02-25
Online:
2019-06-05
Published:
2019-06-05
Contact:
Zhijiang SHAO
通讯作者:
邵之江
作者简介:
<named-content content-type="corresp-name">羊城</named-content>(1990—),女,博士研究生,<email>cyang@zju.edu.cn</email>
基金资助:
CLC Number:
Cheng YANG, Kexin WANG, Zhijiang SHAO, Xiaojin HUAN. An adaptive MA algorithm for significant load changes in HTR-PM[J]. CIESC Journal, 2019, 70(6): 2211-2220.
羊城, 王可心, 邵之江, 黄晓津. HTR-PM大范围变负荷的MA自适应优化算法[J]. 化工学报, 2019, 70(6): 2211-2220.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181421
模块 | 决策变量 | 关键输出变量 | ||
---|---|---|---|---|
核蒸汽供应系统[border:border-top:solid;] | | [0,0.003] | | 30% to 100% (±3%) |
| [30,100]kg/s | | 963.15—1023.15 K (±5 K) | |
| [30,100]kg/s | | 844.15 K±5 K | |
| 13.9 MPa±0.1 MPa | |||
蒸汽联箱 | | [0,1] | | 839.15 K±3 K |
| 13.24 MPa±0.1 MPa |
Table 1 Engineering requirements on decision variables and key outputs of HTR-PM
模块 | 决策变量 | 关键输出变量 | ||
---|---|---|---|---|
核蒸汽供应系统[border:border-top:solid;] | | [0,0.003] | | 30% to 100% (±3%) |
| [30,100]kg/s | | 963.15—1023.15 K (±5 K) | |
| [30,100]kg/s | | 844.15 K±5 K | |
| 13.9 MPa±0.1 MPa | |||
蒸汽联箱 | | [0,1] | | 839.15 K±3 K |
| 13.24 MPa±0.1 MPa |
算法参数 | | | | | |||||
---|---|---|---|---|---|---|---|---|---|
最大 | 平均 | 最大 | 平均 | 最大 | 平均 | 最大 | 平均 | ||
第一组 | b=0.2 | 0.0450 | 0.0152 | 8.3041 | 2.9599 | 0.0450 | 0.0152 | 7.9818 | 2.8683 |
b=0.5 | 0.0366 | 0.0121 | 6.4270 | 2.4416 | 0.0366 | 0.0121 | 6.3363 | 2.3461 | |
b=0.8 | 0.0310 | 0.0096 | 5.6122 | 1.9507 | 0.0310 | 0.0096 | 5.4965 | 1.8507 | |
第二组 | b=d=0.2 | 0.0584 | 0.0181 | 7.7047 | 2.2960 | 0.0584 | 0.0181 | 6.5251 | 2.1988 |
b=d=0.5 | 0.0507 | 0.0147 | 5.4771 | 1.7662 | 0.0507 | 0.0147 | 5.2837 | 1.6539 | |
b=d=0.8 | 0.0387 | 0.0142 | 4.2410 | 1.3170 | 0.0387 | 0.0142 | 4.0059 | 1.3955 | |
第三组 | b=q=d=0.2 | 0.0352 | 0.0165 | 3.4129 | 1.3448 | 0.0352 | 0.0165 | 3.1979 | 1.2555 |
b=q=d=0.5 | 0.0256 | 0.0144 | 1.8268 | 0.8273 | 0.0256 | 0.0144 | 1.6054 | 0.7610 | |
b=q=d=0.8 | 0.0178 | 0.0124 | 1.0062 | 0.5546 | 0.0178 | 0.0124 | 1.0032 | 0.4847 |
Table 2 Deviation from design value of key outputs by MA algorithm (load change stepsize 4%RFP)
算法参数 | | | | | |||||
---|---|---|---|---|---|---|---|---|---|
最大 | 平均 | 最大 | 平均 | 最大 | 平均 | 最大 | 平均 | ||
第一组 | b=0.2 | 0.0450 | 0.0152 | 8.3041 | 2.9599 | 0.0450 | 0.0152 | 7.9818 | 2.8683 |
b=0.5 | 0.0366 | 0.0121 | 6.4270 | 2.4416 | 0.0366 | 0.0121 | 6.3363 | 2.3461 | |
b=0.8 | 0.0310 | 0.0096 | 5.6122 | 1.9507 | 0.0310 | 0.0096 | 5.4965 | 1.8507 | |
第二组 | b=d=0.2 | 0.0584 | 0.0181 | 7.7047 | 2.2960 | 0.0584 | 0.0181 | 6.5251 | 2.1988 |
b=d=0.5 | 0.0507 | 0.0147 | 5.4771 | 1.7662 | 0.0507 | 0.0147 | 5.2837 | 1.6539 | |
b=d=0.8 | 0.0387 | 0.0142 | 4.2410 | 1.3170 | 0.0387 | 0.0142 | 4.0059 | 1.3955 | |
第三组 | b=q=d=0.2 | 0.0352 | 0.0165 | 3.4129 | 1.3448 | 0.0352 | 0.0165 | 3.1979 | 1.2555 |
b=q=d=0.5 | 0.0256 | 0.0144 | 1.8268 | 0.8273 | 0.0256 | 0.0144 | 1.6054 | 0.7610 | |
b=q=d=0.8 | 0.0178 | 0.0124 | 1.0062 | 0.5546 | 0.0178 | 0.0124 | 1.0032 | 0.4847 |
1 | Mckirdy I . Research and development technology development roadmaps for the next generation nuclear plant project[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(4):379-345. |
2 | Sovacool B K , Ramana M V . Back to the future: small modular reactors, nuclear fantasies, and symbolic convergence[J]. Science, Technology, & Human Values, 2015, 40(1): 96-125. |
3 | Kugeler K , Zhang Z . General aspects of high-temperature reactors[M]//Modular High-temperature Gas-cooled Reactor Power Plant. Berlin, Heidelberg: Springer, 2019: 1-22. |
4 | Nian V . Technology perspectives from 1950 to 2100 and policy implications for the global nuclear power industry[J]. Progress in Nuclear Energy, 2018, 105: 83-98. |
5 | Yan X L , Sato H , Sumita J , et al . Design of HTTR-GT/H2 test plant[J]. Nuclear Engineering and Design, 2018, 329: 223-233. |
6 | Yan X L , Sato H , Kamiji Y , et al . GTHTR300 cost reduction through design upgrade and cogeneration[J]. Nuclear Engineering and Design, 2016, 306: 215-220. |
7 | Khane V , Said I A , Al-Dahhan M H . Experimental investigation of pebble flow dynamics using radioactive particle tracking technique in a scaled-down Pebble Bed Modular Reactor (PBMR)[J]. Nuclear Engineering and Design, 2016, 302: 1-11. |
8 | Koltun P , Tsykalo A , Novozhilov V . Life cycle assessment of the new generation GT-MHR nuclear power plant[J]. Energies, 2018, 11(12): 3452. |
9 | Zhang Z , Wu Z , Wang D , et al . Current status and technical description of Chinese 2× 250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239(7): 1212-1219. |
10 | Zhang Z , Wu Z , Sun Y , et al . Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM[J]. Nuclear Engineering and Design, 2006, 236(5/6): 485-490. |
11 | Zhang Z , Dong Y , Li F , et al . The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation[J]. Engineering, 2016, 2(1): 112-118. |
12 | Dong Z , Song M , Huang X ,et al . Module coordination control of MHTGR-based multi-modular nuclear plants[J]. IEEE Transactions on Nuclear Science, 2016:1-1. |
13 | Perillo S R P , Upadhyaya B R , Li F . Control and instrumentation strategies for multi-modular integral nuclear reactor systems[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2442-2451. |
14 | Kim K K , Bernard J A . Considerations in the control of PWR-type multimodular reactor plants[J]. IEEE Transactions on Nuclear Science, 1994, 41(6): 2686-2697. |
15 | Dünnebier G , Engell S , Epping A , et al . Model-based control of batch chromatography[J]. AIChE Journal, 2001, 47(11): 2493-2502. |
16 | Câmara M M , Quelhas A D , Pinto J C . Performance evaluation of real industrial RTO systems[J]. Processes, 2016, 4(4): 44. |
17 | Krishnamoorthy D , Foss B , Skogestad S . Steady-state real-time optimization using transient measurements[J]. Computers and Chemical Engineering, 2018, 115: 34-45. |
18 | Yip W S , Marlin T E . The effect of model fidelity on real-time optimization performance[J]. Computers and Chemical Engineering, 2004, 28(1/2): 267-280. |
19 | Roberts P D , Williams T W C . On an algorithm for combined system optimisation and parameter estimation[J]. Automatica, 1981, 17(1): 199-209. |
20 | Roberts P D . Coping with model-reality differences in industrial process optimisation—a review of integrated system optimisation and parameter estimation (ISOPE)[J]. Computers in Industry, 1995, 26(3): 281-290. |
21 | Tatjewski P , Brdyś M A , Duda J . Optimizing control of uncertain plants with constrained feedback controlled outputs[J]. International Journal of Control, 2001, 74(15): 1510-1526. |
22 | Brdyś M , Ellis J E , Roberts P D . Augmented integrated system optimisation and parameter estimation technique: derivation, optimality and convergence[J]. IEE Proceedings, 1987, 134(3): 201-209. |
23 | Tatjewski P . Iterative optimizing set-point control–the basic principle redesigned[J]. IFAC Proceedings Volumes, 2002, 35(1): 49-54. |
24 | Marchetti A , Chachuat B , Bonvin D . Modifier-adaptation methodology for real-time optimization[J]. Industrial and Engineering Chemistry Research, 2009, 48(13): 6022-6033. |
25 | Costello S , François G , Bonvin D . A directional modifier-adaptation algorithm for real-time optimization[J]. Journal of Process Control, 2016, 39: 64-76. |
26 | Marchetti A , François G , Faulwasser T , et al . Modifier adaptation for real-time optimization—methods and applications[J]. Processes, 2016, 4(4): 55. |
27 | Gao W , Wenzel S , Engell S . A reliable modifier-adaptation strategy for real-time optimization[J]. Computers and Chemical Engineering, 2016, 91: 318-328. |
28 | Gao W , Engell S . Iterative set-point optimization of batch chromatography[J]. Computers and Chemical Engineering, 2005, 29(6): 1401-1409. |
29 | Biegler L T , Lang Y D , Lin W . Multi-scale optimization for process systems engineering[J]. Computers and Chemical Engineering, 2014, 60:17-30. |
30 | Dong Z , Huang X . Real-time simulation platform for the design and verification of the operation strategy of the HTR-PM[C]//2013 21st International Conference on Nuclear Engineering. New York: American Society of Mechanical Engineers, 2013:V005T13A017-V005T13A017. |
31 | Sui Z , Sun J , Wei C , et al . The engineering simulation system for HTR-PM[J]. Nuclear Engineering and Design, 2014, 271: 479-486. |
32 | Aster R C , Borchers B , Thurber C H . Parameter Estimation and Inverse Problems[M]. Boston: Elsevier, 2018. |
33 | Brdys M A , Tatjewski P . Iterative Algorithms for Multilayer Optimizing Control[M]. London: Imperial College Press, 2005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||