CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 546-558.DOI: 10.11949/0438-1157.20221091
• Reviews and monographs • Previous Articles Next Articles
Xingyu XIANG(), Zhongdong WANG, Yanpeng DONG, Shouchuan LI, Chunying ZHU, Youguang MA, Taotao FU()
Received:
2022-08-01
Revised:
2022-09-16
Online:
2023-03-21
Published:
2023-02-05
Contact:
Taotao FU
项星宇(), 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛()
通讯作者:
付涛涛
作者简介:
项星宇(1998—),女,硕士研究生,xiang2021_@ tju.edu.cn
基金资助:
CLC Number:
Xingyu XIANG, Zhongdong WANG, Yanpeng DONG, Shouchuan LI, Chunying ZHU, Youguang MA, Taotao FU. Progress on rheological properties and multiphase flow of yield stress fluids in microchannels[J]. CIESC Journal, 2023, 74(2): 546-558.
项星宇, 王忠东, 董艳鹏, 李守川, 朱春英, 马友光, 付涛涛. 微通道内屈服应力型流体的流变特性及多相流研究进展[J]. 化工学报, 2023, 74(2): 546-558.
Fig.3 The velocity profile of emulsion A (oil volume fraction Φ = 75%) was corrected for slip velocity (the dashed line is the speed curve predicted by the H-B equation)[49]
Fig.5 (a) Different stages of the break-up mechanism inside the T-junction;(b) Spatiotemporal diagram of the break-up dynamic for a bubble train; (c) Typical evolution of the time to form one bubble tb and bubble length l as functions of the time [80]
1 | Sollich P, Lequeux F, Hébraud P, et al. Rheology of soft glassy materials[J]. Physical Review Letters, 1997, 78(10): 2020-2023. |
2 | de Kee D. Yield stress measurement techniques: a review[J]. Physics of Fluids, 2021, 33(11): 111301. |
3 | 李振坤. 磁性液体流变特性及其对密封液体性能影响研究[D]. 北京: 北京交通大学, 2019. |
Li Z K. Study on the rheological property of magnetic liquids and its influence on sealing fluids performance[D]. Beijing: Beijing Jiaotong University, 2019. | |
4 | 李瑞琪, 韦越, 郭亚龙, 等. 复杂流体的屈服应力及其测定与应用[J]. 中国制笔, 2020(2): 21-31. |
Li R Q, Wei Y, Guo Y L, et al. The yield stress of complex fluid and its determination and application[J]. China Writing Instruments, 2020(2): 21-31. | |
5 | 吴爱祥, 李红, 程海勇, 等. 全尾砂膏体流变学研究现状与展望(下):流变测量与展望[J]. 工程科学学报, 2021, 43(4): 451-459. |
Wu A X, Li H, Cheng H Y, et al. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects[J]. Chinese Journal of Engineering, 2021, 43(4): 451-459. | |
6 | 杜宇. 典型屈服应力流体的非线性流变行为以及局部流动行为的研究[D]. 上海: 上海交通大学, 2013. |
Du Y. Nonlinear rheology and local flow behavior of typical yield stress fluids[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
7 | Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids[J]. Rheologica Acta, 2009, 48(8): 831-844. |
8 | Paredes J, Shahidzadeh N, Bonn D. Wall slip and fluidity in emulsion flow[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(4): 042313. |
9 | Hormozi S, Frigaard I A. Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 169/170: 61-73. |
10 | Han Y N, Dama J F, Voth G A. Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models[J]. The Journal of Chemical Physics, 2018, 149(4): 044104. |
11 | 李佳明. 屈服应力流体的粗粒化分子动力学模拟研究[J]. 工业控制计算机, 2019, 32(6): 73-75. |
Li J M. Coarse grained molecular dynamic simulation of yield stress fluid[J]. Industrial Control Computer, 2019, 32(6): 73-75. | |
12 | de Souza Mendes P R, Thompson R L. Time-dependent yield stress materials[J]. Current Opinion in Colloid & Interface Science, 2019, 43: 15-25. |
13 | Ewoldt R H, McKinley G H. Mapping thixo-elasto-visco-plastic behavior[J]. Rheologica Acta, 2017, 56(3): 195-210. |
14 | Frigaard I. Simple yield stress fluids[J]. Current Opinion in Colloid & Interface Science, 2019, 43: 80-93. |
15 | Mitishita R S, MacKenzie J A, Elfring G J, et al. Fully turbulent flows of viscoplastic fluids in a rectangular duct[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 293: 104570. |
16 | Beris A, Tsamopoulos J, Armstrong R, et al. Creeping motion of a sphere through a Bingham plastic[J]. Journal of Fluid Mechanics, 1985, 158: 219-244. |
17 | Tammaro D, Chandran S V, Kannan A, et al. Flowering in bursting bubbles with viscoelastic interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(30): e2105058118. |
18 | Frigaard I A. Super-stable parallel flows of multiple visco-plastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 100(1/2/3): 49-75. |
19 | Testa P, Chappuis B, Kistler S, et al. Switchable adhesion of soft composites induced by a magnetic field[J]. Soft Matter, 2020, 16(25): 5806-5811. |
20 | Lira S A, Miranda J A. Field-controlled adhesion in confined magnetorheological fluids[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(4 Pt 2): 046313. |
21 | Morillas J R, de Vicente J. Magnetorheology: a review[J]. Soft Matter, 2020, 16(42): 9614-9642. |
22 | Crassous J J, Mihut A M, Dietsch H, et al. Advanced multiresponsive comploids: from design to possible applications[J]. Nanoscale, 2014, 6(15): 8726-8735. |
23 | Zhang H, Cong Y, Osi A R, et al. Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth[J]. Advanced Functional Materials, 2020, 30(13): 1910573. |
24 | 邱玉锐. 聚苯胺类材料的合成及电流变性能研究[D]. 湘潭: 湘潭大学, 2011. |
Qiu Y R. Study on the synthesis and electrorheolgical properties of polyaniline derivatives[D]. Xiangtan: Xiangtan University, 2011. | |
25 | 陈承响. 端基为硫辛酸酯的遥爪型聚合物的合成及其在基础油中的凝胶性能研究[D]. 兰州: 兰州大学, 2020. |
Chen C X. Synthesis of thioctic acid ester terminated telechelic polymers and their gelation in base oil[D]. Lanzhou: Lanzhou University, 2020. | |
26 | 王俊,俞炜,周持兴. 聚合物黏弹性及填充粒子对纳米复合体系屈服应力的影响[C]// 2015年全国高分子学术论文报告会. 苏州, 2015. |
Wang J, Yu W, Zhou C X. Effect of polymer viscoelasticity and packed particles on yield stress of nanocomposite systems [C]// The National Polymer Academic Paper Report Conference 2015. Suzhou, 2015. | |
27 | Nelson A Z, Schweizer K S, Rauzan B M, et al. Designing and transforming yield-stress fluids[J]. Current Opinion in Solid State and Materials Science, 2019, 23(5): 100758. |
28 | Zhang P, Li Y H, Chen L, et al. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 939-949. |
29 | 何慕, 罗未知, 雷蕾, 等. 多孔介质声学:从微观几何特征到宏观吸声性能[J]. 固体力学学报, 2022, 43(4): 485-518. |
He M, Luo W Z, Lei L, et al. Acoustics of porous media: from microscopic geometric structures to macroscopic sound absorption performances[J]. Chinese Journal of Solid Mechanics, 2022, 43(4): 485-518. | |
30 | 刘鹏飞, 邵玉, 李春雪, 等. 气泡特征对混凝土耐久性能影响的研究[J]. 混凝土世界, 2022(2): 56-59. |
Liu P F, Shao Y, Li C X, et al. Study on the influence of bubble characteristics on the durability of concrete[J]. China Concrete, 2022(2): 56-59. | |
31 | 王春国, 文安松, 范子豪, 等. 泡沫增强复合材料点阵夹芯梁抗冲击性能[J]. 高压物理学报, 2022, 36(1): 115-124. |
Wang C G, Wen A S, Fan Z H, et al. Dynamic failure of foam-reinforce composite lattice sandwich beam to local impulsive load[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 115-124. | |
32 | Laborie B, Rouyer F, Angelescu D E, et al. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices[J]. Soft Matter, 2016, 12(46): 9355-9363. |
33 | Laborie B, Rouyer F, Angelescu D E, et al. On the stability of the production of bubbles in yield-stress fluid using flow-focusing and T-junction devices[J]. Physics of Fluids, 2016, 28(6): 063103. |
34 | 韩征, 粟滨, 李艳鸽, 等. 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485, 510. |
Han Z, Su B, Li Y G, et al. Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model[J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485, 510. | |
35 | Kozicki W, Kuang P Q. Prediction of lower/upper limiting viscosities[J]. The Canadian Journal of Chemical Engineering, 1993, 71(2): 329-331. |
36 | Dinkgreve M, Paredes J, Denn M M, et al. On different ways of measuring “the” yield stress[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 238: 233-241. |
37 | Younes E, Bertola V, Castelain C, et al. Slippery flows of a Carbopol gel in a microchannel [J]. Physical Review Fluids, 2020, 5(8). |
38 | Menut P, Seiffert S, Sprakel J, et al. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels[J]. Soft Matter, 2012, 8(1): 156-164. |
39 | Coussot P. Yield stress fluid flows: a review of experimental data[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 211: 31-49. |
40 | Peng X Y, Wang T Y, Sun K, et al. Droplet splashing during the impact on liquid pools of shear-thinning fluids with yield stress[J]. Physics of Fluids, 2021, 33(11): 112106. |
41 | Hojeij A, Jossic L, Séchet P, et al. Experimental study and numerical modeling of mixing by air injection in yield stress fluids using the OpenFOAM software[J]. AIChE Journal, 2022, 68(2): e17442. |
42 | Tsamopoulos J, Dimakopoulos Y, Chatzidai N, et al. Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment[J]. Journal of Fluid Mechanics, 2008, 601: 123-164. |
43 | Mougin N, Magnin A, Piau J M. The significant influence of internal stresses on the dynamics of bubbles in a yield stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 171/172: 42-55. |
44 | Chaparian E, Owens C E, McKinley G H. Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixtures[J]. Journal of Non-Newtonian Fluid Mechanics, 2022, 307: 104857. |
45 | Haustein M A, Eslami Pirharati M, Fataei S, et al. Benchmark simulations of dense suspensions flow using computational fluid dynamics [J]. Frontiers in Materials, 2022, DOI: 10.3389/fmats.2022.874144 . |
46 | Froishteter G B, Vinogradov G V. The laminar flow of plastic disperse systems in circular tubes[J]. Rheologica Acta, 1980, 19(2): 239-250. |
47 | Chilton R A, Stainsby R. Pressure loss equations for laminar and turbulent non-Newtonian pipe flow[J]. Journal of Hydraulic Engineering, 1998, 124(5): 522-529. |
48 | Slatter P P T. The role of the yield stress on the laminar/turbulent transition [C]// 9th International Conference on Transport and Sedimentation of Solid Particles. Cracow, 1997. |
49 | Goyon J, Colin A, Bocquet L. How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity[J]. Soft Matter, 2010, 6: 2668-2678. |
50 | Barnes H A. A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 56(3): 221-251. |
51 | Dreyfus R, Tabeling P, Willaime H. Ordered and disordered patterns in two-phase flows in microchannels[J]. Physical Review Letters, 2003, 90(14): 144505. |
52 | 李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012: 92. |
Li Z H, Wu J K, Hu G Q. Fluid Flow in Microfluidic Chips[M]. Beijing: Science Press, 2012: 92. | |
53 | Christel M G, Yahya R, Albert M, et al. Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls[J]. Soft Matter, 2012, 8: 7365-7367. |
54 | Bonn D, Denn M M, Berthier L, et al. Yield stress materials in soft condensed matter [J]. Reviews of Modern Physics, 2017, 89(3): 035005. |
55 | Kalyon D. Apparent slip and viscoplasticity of concentrated suspensions[J]. Journal of Rheology, 2005, 49: 621-640. |
56 | Magnin A, Piau J M. Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel[J]. Journal of Non-Newtonian Fluid Mechanics, 1990, 36: 85-108. |
57 | Younes E, Himl M, Stary Z, et al. On the elusive nature of Carbopol gels: “model”, weakly thixotropic, or time-dependent viscoplastic materials? [J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 281: 104315. |
58 | Liu Y, Lorusso D, Holdsworth D W, et al. Effect of confinement on the rheology of a yield-stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 261: 25-32. |
59 | Goyon J, Colin A, Ovarlez G, et al. Spatial cooperativity in soft glassy flows[J]. Nature, 2008, 454(7200): 84-87. |
60 | Jofore B D, Erni P, Vleminckx G, et al. Rheology of microgels in single particle confinement[J]. Rheologica Acta, 2015, 54(7): 581-600. |
61 | Clasen C, McKinley G H. Gap-dependent microrheometry of complex liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 124(1/2/3): 1-10. |
62 | Mensire R, Lorenceau E. Stable oil-laden foams: formation and evolution[J]. Advances in Colloid and Interface Science, 2017, 247: 465-476. |
63 | 路慧玲, 戴干策. 纤维增强复合材料浸渍过程中气泡的形成与排除[J]. 纤维复合材料, 2000, 17(3): 7-10. |
Lu H L, Dai G C. Formation and elimination of voids in the impregnation of glass reinforced composites[J]. Fiber Composites, 2000, 17(3): 7-10. | |
64 | Bonnett D L, Butler P B. Hot-spot ignition of condensed phase energetic materials[J]. Journal of Propulsion and Power, 1996, 12(4): 680-690. |
65 | Samson G, Phelipot-Mardelé A, Lanos C, et al. Quasi-static bubble in a yield stress fluid: elasto-plastic model[J]. Rheologica Acta, 2017, 56(5): 431-443. |
66 | Zare M, Frigaard I A. Onset of miscible and immiscible fluids' invasion into a viscoplastic fluid[J]. Physics of Fluids, 2018, 30(6): 063101. |
67 | Mossaz S, Jay P, Magnin A. Two-dimensional unsteady inertial flows of a yield stress fluid around a cylinder[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 295: 104623. |
68 | Sikorski D, Tabuteau H, de Bruyn J R. Motion and shape of bubbles rising through a yield-stress fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 159(1/2/3): 10-16. |
69 | Iglesias J A, Mercier G, Chaparian E, et al. Computing the yield limit in three-dimensional flows of a yield stress fluid about a settling particle[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 284: 104374. |
70 | Terasaka K, Tsuge H. Bubble formation at a nozzle submerged in viscous liquids having yield stress[J]. Chemical Engineering Science, 2001, 56(10): 3237-3245. |
71 | Singh J P, Denn M M. Interacting two-dimensional bubbles and droplets in a yield-stress fluid[J]. Physics of Fluids, 2008, 20(4): 040901. |
72 | Pourzahedi A, Zare M, Frigaard I A. Eliminating injection and memory effects in bubble rise experiments within yield stress fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 292: 104531. |
73 | Putz A M V, Burghelea T I, Frigaard I A, et al. Settling of an isolated spherical particle in a yield stress shear thinning fluid[J]. Physics of Fluids, 2008, 20(3): 033102. |
74 | Putz A, Frigaard I A. Creeping flow around particles in a Bingham fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(5/6): 263-280. |
75 | Fraggedakis D, Dimakopoulos Y, Tsamopoulos J. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids[J]. Soft Matter, 2016, 12(24): 5378-5401. |
76 | 王宜飞, 王清强, 姬德生, 等. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514. |
Wang Y F, Wang Q Q, Ji D S, et al. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics[J]. CIESC Journal, 2022, 73(4): 1501-1514. | |
77 | Wang H, Shen Q Y, Zhu C Y, et al. Formation and uniformity of bubbles in highly viscous fluids in symmetric parallel microchannels[J]. Chemical Engineering Science, 2021, 230: 116166. |
78 | Wang H, Jiang S K, Zhu C Y, et al. Bubble formation in T-junctions within parallelized microchannels: effect of viscoelasticity[J]. Chemical Engineering Journal, 2021, 426: 131783. |
79 | Wang H, Liu L Y, Zhu C Y, et al. Stability and uniformity of gas-liquid two-phase flow in shear-thinning fluids in parallelized microchannels[J]. Chemical Engineering Journal, 2022, 444: 136679. |
80 | Laborie B, Rouyer F, Angelescu D E, et al. Bubble formation in yield stress fluids using flow-focusing and T-junction devices[J]. Physical Review Letters, 2015, 114(20): 204501. |
81 | Hashimoto M, Shevkoplyas S S, Zasońska B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10): 1795-1805. |
82 | Zhang J, Coulston R J, Jones S T, et al. One-step fabrication of supramolecular microcapsules from microfluidic droplets[J]. Science, 2012, 335(6069): 690-694. |
83 | Dunne P, Adachi T, Dev A A, et al. Liquid flow and control without solid walls[J]. Nature, 2020, 581(7806): 58-62. |
84 | Liu Y C, Li Y L, Hensel A, et al. A review on emulsification via microfluidic processes[J]. Frontiers of Chemical Science and Engineering, 2020, 14(3): 350-364. |
85 | Wang J T, Zhang J, Han J J. Synthesis of crystals and particles by crystallization and polymerization in droplet-based microfluidic devices[J]. Frontiers of Chemical Engineering in China, 2010, 4(1): 26-36. |
86 | Lohse D. Fundamental fluid dynamics challenges in inkjet printing [J]. Annual Review of Fluid Mechanics, 2022, 54(1): 349-382. |
87 | Baroud C N, Gallaire F, Dangla R. Dynamics of microfluidic droplets[J]. Lab on a Chip, 2010, 10(16): 2032-2045. |
88 | 刘西洋, 付涛涛, 朱春英, 等. 微通道内非牛顿流体中液滴生成机理研究进展[J]. 化工学报, 2021, 72(2): 772-782. |
Liu X Y, Fu T T, Zhu C Y, et al. Progress on droplet formation mechanism in non-Newtonian fluids in microchannels[J]. CIESC Journal, 2021, 72(2): 772-782. | |
89 | 邓传富, 汪伟, 谢锐, 等. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974. |
Deng C F, Wang W, Xie R, et al. Recent progress in scale-up integration of microfluidic droplet generators[J]. CIESC Journal, 2021, 72(12): 5965-5974. | |
90 | Boujlel J, Coussot P. Measuring the surface tension of yield stress fluids[J]. Soft Matter, 2013, 9: 5898-5908. |
91 | Louvet N, Bonn D, Kellay H. Nonuniversality in the pinch-off of yield stress fluids: role of nonlocal rheology[J]. Physical Review Letters, 2014, 113(21): 218302. |
92 | Balmforth N J, Dubash N, Slim A C. Extensional dynamics of viscoplastic filaments(Ⅱ): Drips and bridges[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(19/20): 1147-1160. |
93 | Alam M J, Nirmalkar N, Gupta A K. Stability criteria and convective mass transfer from the falling spherical drops(Ⅱ): Herschel-Bulkley fluids [J]. Canadian Journal of Chemical Engineering, 2022, 100(7): 1640-1651. |
94 | He C X, Jiang S K, Zhu C Y, et al. Self-assembly of droplet swarms and its feedback on droplet generation in a step-emulsification microdevice with parallel microchannels[J]. Chemical Engineering Science, 2022, 256: 117685. |
95 | 张志伟, 朱春英, 马友光, 等. 微通道内气泡和液滴自组织行为的研究进展[J]. 化工学报, 2022, 73(1): 144-152. |
Zhang Z W, Zhu C Y, Ma Y G, et al. Progress of self-organization behavior of bubbles and droplets in microchannels[J]. CIESC Journal, 2022, 73(1): 144-152. | |
96 | Hong J S, Cooper-White J. Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel[J]. Korea-Australia Rheology Journal, 2009, 21: 269-280. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[3] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[4] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[5] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[11] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[12] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[13] | Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964. |
[14] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[15] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 428
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||