CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5660-5671.DOI: 10.11949/0438-1157.20221141
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Wenqi CUI1,2(), Shuguang YANG1,3, Hongzhou LI1, Fubin LUO1()
Received:
2022-08-15
Revised:
2022-10-23
Online:
2023-01-17
Published:
2022-12-05
Contact:
Fubin LUO
崔雯琦1,2(), 杨曙光1,3, 李红周1, 罗富彬1()
通讯作者:
罗富彬
作者简介:
崔雯琦(1999—),女,硕士研究生, 1992926413@qq.com
基金资助:
CLC Number:
Wenqi CUI, Shuguang YANG, Hongzhou LI, Fubin LUO. Preparation of highly thermally conductive and shape-stabilized polyethylene glycol-based phase change material[J]. CIESC Journal, 2022, 73(12): 5660-5671.
崔雯琦, 杨曙光, 李红周, 罗富彬. 聚乙二醇高导热定形相变复合材料的制备及其性能研究[J]. 化工学报, 2022, 73(12): 5660-5671.
Add to citation manager EndNote|Ris|BibTeX
Sample | PEG质量/g | PAA质量/g | PEG与PAA的质量比 | f-BN质量/g | s-BN质量/g | f-BN与s-BN的质量比 |
---|---|---|---|---|---|---|
PCM-(PEG3/PAA1)-(f-BN3/s-BN1) | 30.0 | 10.0 | 3∶1 | 45.0 | 15.0 | 3∶1 |
PCM-(PEG6/PAA1)-(f-BN6/s-BN1) | 34.3 | 5.7 | 6∶1 | 51.4 | 8.6 | 6∶1 |
PCM-(PEG9/PAA1)-(f-BN9/s-BN1) | 36.0 | 4.0 | 9∶1 | 54.0 | 6.0 | 9∶1 |
PCM-(PEG12/PAA1)-(f-BN12/s-BN1) | 36.9 | 3.1 | 12∶1 | 55.4 | 4.6 | 12∶1 |
PCM-(PEG3/PAA1)-(f-BN-60) | 30.0 | 10.0 | 3∶1 | 60.0 | 0 | |
PCM-(PEG6/PAA1)-(f-BN-60) | 34.3 | 5.7 | 6∶1 | 60.0 | 0 | |
PCM-(PEG9/PAA1)-(f-BN-60) | 36.0 | 4.0 | 9∶1 | 60.0 | 0 | |
PCM-(PEG12/PAA1)-(f-BN-60) | 36.9 | 3.1 | 12∶1 | 60.0 | 0 | |
PCM-(PEG12/PAA1)-(f-BN-40) | 55.4 | 4.6 | 12∶1 | 40.0 | 0 | |
PCM-(PEG12/PAA1)-(f-BN-20) | 73.8 | 6.2 | 12∶1 | 20.0 | 0 |
Table 1 The mass ratio of PEG, PAA and BN in the composites
Sample | PEG质量/g | PAA质量/g | PEG与PAA的质量比 | f-BN质量/g | s-BN质量/g | f-BN与s-BN的质量比 |
---|---|---|---|---|---|---|
PCM-(PEG3/PAA1)-(f-BN3/s-BN1) | 30.0 | 10.0 | 3∶1 | 45.0 | 15.0 | 3∶1 |
PCM-(PEG6/PAA1)-(f-BN6/s-BN1) | 34.3 | 5.7 | 6∶1 | 51.4 | 8.6 | 6∶1 |
PCM-(PEG9/PAA1)-(f-BN9/s-BN1) | 36.0 | 4.0 | 9∶1 | 54.0 | 6.0 | 9∶1 |
PCM-(PEG12/PAA1)-(f-BN12/s-BN1) | 36.9 | 3.1 | 12∶1 | 55.4 | 4.6 | 12∶1 |
PCM-(PEG3/PAA1)-(f-BN-60) | 30.0 | 10.0 | 3∶1 | 60.0 | 0 | |
PCM-(PEG6/PAA1)-(f-BN-60) | 34.3 | 5.7 | 6∶1 | 60.0 | 0 | |
PCM-(PEG9/PAA1)-(f-BN-60) | 36.0 | 4.0 | 9∶1 | 60.0 | 0 | |
PCM-(PEG12/PAA1)-(f-BN-60) | 36.9 | 3.1 | 12∶1 | 60.0 | 0 | |
PCM-(PEG12/PAA1)-(f-BN-40) | 55.4 | 4.6 | 12∶1 | 40.0 | 0 | |
PCM-(PEG12/PAA1)-(f-BN-20) | 73.8 | 6.2 | 12∶1 | 20.0 | 0 |
Fig.2 Thermal conductivity of the PCM composites filled with 60%(mass) flake-like boron nitride (a), flake-like/spherical boron nitride hybrids (b) and different content of flake-like boron nitride (c), respectively
Fig.3 SEM images of PCM composites filled with flake-like/spherical boron nitride hybrids: (a) s-BN∶f-BN=1∶3, (b) s-BN∶f-BN=1∶6, (c) s-BN∶f-BN=1∶9, (d) s-BN∶f-BN=1∶12;Schematic diagram of thermally conductive paths: (e) s-BN∶f-BN=1∶6, (e) s-BN∶f-BN=1∶12
Sample | Tm /℃ | ΔHm /(J/g) | Theoretical Δ Hm /(J/g) | Tc/℃ | ΔHc/(J/g) | Theoretical Δ Hc/(J/g) |
---|---|---|---|---|---|---|
PEG | 58.93 | 141.2 | 39.48 | 139.5 | ||
PCM-(PEG3/PAA1)-(f-BN-60) | 53.63 | 33.91 | 42.36 | — | — | 41.85 |
PCM-(PEG6/PAA1)-(f-BN-60) | 58.42 | 40.18 | 48.41 | 24.28 | 37.44 | 47.83 |
PCM-(PEG9/PAA1)-(f-BN-60) | 57.69 | 50.70 | 50.83 | 32.55 | 49.88 | 50.22 |
PCM-(PEG12/PAA1)-(f-BN-60) | 57.93 | 51.07 | 52.14 | 35.84 | 47.65 | 51.51 |
PCM-(PEG12/PAA1)-(f-BN-40) | 56.70 | 90.94 | 78.22 | 30.93 | 87.45 | 77.28 |
PCM-(PEG12/PAA1)-(f-BN-20) | 58.08 | 119.1 | 104.21 | 36.19 | 119.0 | 102.95 |
Table 2 Phase transformation enthalpy and phase transition temperature of the prepared PCM composites filled with flake-like boron nitride
Sample | Tm /℃ | ΔHm /(J/g) | Theoretical Δ Hm /(J/g) | Tc/℃ | ΔHc/(J/g) | Theoretical Δ Hc/(J/g) |
---|---|---|---|---|---|---|
PEG | 58.93 | 141.2 | 39.48 | 139.5 | ||
PCM-(PEG3/PAA1)-(f-BN-60) | 53.63 | 33.91 | 42.36 | — | — | 41.85 |
PCM-(PEG6/PAA1)-(f-BN-60) | 58.42 | 40.18 | 48.41 | 24.28 | 37.44 | 47.83 |
PCM-(PEG9/PAA1)-(f-BN-60) | 57.69 | 50.70 | 50.83 | 32.55 | 49.88 | 50.22 |
PCM-(PEG12/PAA1)-(f-BN-60) | 57.93 | 51.07 | 52.14 | 35.84 | 47.65 | 51.51 |
PCM-(PEG12/PAA1)-(f-BN-40) | 56.70 | 90.94 | 78.22 | 30.93 | 87.45 | 77.28 |
PCM-(PEG12/PAA1)-(f-BN-20) | 58.08 | 119.1 | 104.21 | 36.19 | 119.0 | 102.95 |
Sample | Tm /℃ | Δ Hm/(J/g) | Theoretical Δ Hm /(J/g) | Tc/℃ | Δ Hc /(J/g) | Theoretical Δ Hc/(J/g) |
---|---|---|---|---|---|---|
PCM-(PEG3/PAA1)-(f-BN3/s-BN1) | 58.51 | 28.69 | 42.36 | — | — | 41.85 |
PCM-(PEG6/PAA1)-(f-BN6/s-BN1) | 58.83 | 37.43 | 48.41 | 24.56 | 35.89 | 47.83 |
PCM-(PEG9/PAA1)-(f-BN9/s-BN1) | 53.83 | 32.72 | 50.83 | 24.57 | 32.97 | 50.22 |
PCM-(PEG12/PAA1)-(f-BN12/s-BN1) | 55.34 | 40.17 | 52.14 | 30.28 | 39.48 | 51.51 |
Table 3 Phase transformation enthalpy and phase transition temperature of the prepared PCM composites filled with flake-like/spherical boron nitride hybrids (60%)
Sample | Tm /℃ | Δ Hm/(J/g) | Theoretical Δ Hm /(J/g) | Tc/℃ | Δ Hc /(J/g) | Theoretical Δ Hc/(J/g) |
---|---|---|---|---|---|---|
PCM-(PEG3/PAA1)-(f-BN3/s-BN1) | 58.51 | 28.69 | 42.36 | — | — | 41.85 |
PCM-(PEG6/PAA1)-(f-BN6/s-BN1) | 58.83 | 37.43 | 48.41 | 24.56 | 35.89 | 47.83 |
PCM-(PEG9/PAA1)-(f-BN9/s-BN1) | 53.83 | 32.72 | 50.83 | 24.57 | 32.97 | 50.22 |
PCM-(PEG12/PAA1)-(f-BN12/s-BN1) | 55.34 | 40.17 | 52.14 | 30.28 | 39.48 | 51.51 |
Fig.6 The shape stability performance of the prepared PCM composites: (a) digital pictures of the specimens upon heating (100℃); (b) digital pictures of the specimens upon heating and cooling cycles at 80℃ [the specimen codes (1), (2), (3) and (4) represent the PCM composite containing a PAA /PEG ratio of 1∶3, 1∶6, 1∶9, 1∶12, respectively, corresponding to PCM-(PEG3/PAA1)-(f-BN-60), PCM-(PEG6/PAA1)-(f-BN-60), PCM-(PEG9/PAA1)-(f-BN-60), PCM-(PEG12/PAA1)-(f-BN-60), the specimen code (5) refers to the PEG/f-BN PCM composite]
Fig.7 The shape stability performance of the prepared PCM composites: (a) digital pictures of the specimens upon heating (100℃); (b) digital pictures of the specimens upon heating and cooling cycles at 80℃ [the specimen codes (6), (7) and (8) represent the PCM composite filled with 20%(mass), 40%(mass) and 60%(mass) f-BN respectively, corresponding to PCM-(PEG12/PAA1)-(f-BN-20),PCM-(PEG12/PAA1)-(f-BN-40) and PCM-(PEG12/PAA1)-(f-BN-60)]
Fig.8 FTIR of the PCM composites (a), SEM of the PCM composites (b), where (1), (2), (3) and (4) corresponding to PCM-(PEG3/PAA1)-(f-BN-60), PCM-(PEG6/PAA1)-(f-BN-60), PCM-(PEG9/PAA1)-(f-BN-60), PCM-(PEG12/PAA1)-(f-BN-60), respectively; shape stabilized mechanism diagram of the PCM composite (c)
编号 | 填充组分 | 填料比例 | 定形以及制备方式 | 热导率/(W/(m·K)) | 文献 |
---|---|---|---|---|---|
1 | 膨胀石墨/改性云母 | 3.22%(质量)/32.25%(质量) | 多孔石墨定形,真空浸渍法 | 0.56 | [ |
2 | 银纳米线/膨胀蛭石 | 19.3%(质量)/21.9%(质量) | 膨胀蛭石定形,物理共混和浸渍法 | 0.68 | [ |
3 | 氮化硼/石墨烯 | 23%(质量)/少量 | 冰模板自组装氮化硼/石墨烯多孔类气凝胶定形,真空浸渍法 | 2.36 | [ |
4 | 硅藻土/碳纳米管 | 36.8%(质量)/3.2%(质量) | 硅藻土孔结构定形,浸渍法 | 1.52 | [ |
5 | 改性二氧化硅/氧化碳纳米管 | 39.4%(质量)/0.6%(质量) | 改性二氧化硅定形,溶胶-凝胶法 | 0.41 | [ |
6 | 氮化硼/纳米纤维素/壳聚糖 | 47.4%(质量)/15.8%(质量)/2.4%(质量) | 纳米纤维素/壳聚糖界面相互作用定形,界面聚电解质络合纺丝法 | 4.005 | [ |
7 | 二氧化硅/石墨 | 10%(质量)/6%(质量) | 二氧化硅网状分子结构定形,溶胶-凝胶法和浸渍法 | 1.867 | [ |
8 | 聚丙烯酰胺 | 40%(质量) | 聚丙烯酰胺三维网络结构定形,化学交联法 | 0.375 | [ |
9 | 氮化硼/聚丙烯酸 | 60%(质量)/3.1%(质量) | 片状氮化硼阻隔及聚丙烯酸氢键络合,熔融共混浇筑法 | 6.437 | 本文 |
Table 4 Comparison of polyethylene glycol-based thermally conductive phase change composites reported in literature
编号 | 填充组分 | 填料比例 | 定形以及制备方式 | 热导率/(W/(m·K)) | 文献 |
---|---|---|---|---|---|
1 | 膨胀石墨/改性云母 | 3.22%(质量)/32.25%(质量) | 多孔石墨定形,真空浸渍法 | 0.56 | [ |
2 | 银纳米线/膨胀蛭石 | 19.3%(质量)/21.9%(质量) | 膨胀蛭石定形,物理共混和浸渍法 | 0.68 | [ |
3 | 氮化硼/石墨烯 | 23%(质量)/少量 | 冰模板自组装氮化硼/石墨烯多孔类气凝胶定形,真空浸渍法 | 2.36 | [ |
4 | 硅藻土/碳纳米管 | 36.8%(质量)/3.2%(质量) | 硅藻土孔结构定形,浸渍法 | 1.52 | [ |
5 | 改性二氧化硅/氧化碳纳米管 | 39.4%(质量)/0.6%(质量) | 改性二氧化硅定形,溶胶-凝胶法 | 0.41 | [ |
6 | 氮化硼/纳米纤维素/壳聚糖 | 47.4%(质量)/15.8%(质量)/2.4%(质量) | 纳米纤维素/壳聚糖界面相互作用定形,界面聚电解质络合纺丝法 | 4.005 | [ |
7 | 二氧化硅/石墨 | 10%(质量)/6%(质量) | 二氧化硅网状分子结构定形,溶胶-凝胶法和浸渍法 | 1.867 | [ |
8 | 聚丙烯酰胺 | 40%(质量) | 聚丙烯酰胺三维网络结构定形,化学交联法 | 0.375 | [ |
9 | 氮化硼/聚丙烯酸 | 60%(质量)/3.1%(质量) | 片状氮化硼阻隔及聚丙烯酸氢键络合,熔融共混浇筑法 | 6.437 | 本文 |
Fig.9 Surface temperature variation curves of E51/BN, PEG/PAA, PCM-(PEG3/PAA1)-(f-BN-60), PCM-(PEG12/PAA1)-(f-BN-60) samples recorded by an infrared imaging devices upon heating (a); the diagram of the testing experiment (b); infrared thermal imaging of four samples upon heating (c); where (T-1), (T-2), (T-3), (T-4) are corresponding to PEG/PAA, PCM-(PEG3/PAA1)-(f-BN-60), PCM-(PEG12/PAA1)-(f-BN-60), E51/BN, PEG/PAA, respectively
1 | Wang R Z, Chen L F, Lei Q, et al. Preparation and characterization of polyethylene glycol/polyurea composites for shape stabilized phase change materials[J]. Polymer Engineering and Science, 2021, 62(3): 664-676. |
2 | Wang T J, Wang C M, Chen K, et al. Preparation, thermal, and mechanical properties of polyethylene glycol/expoxy resin composites as form-stable phase change materials[J]. Polymer Engineering and Science, 2021, 62(2): 520-529. |
3 | 李泽坤, 薛锋. 聚乙二醇/聚氯乙烯/废旧PCB非金属粉复合定形相变材料的制备与研究[J]. 塑料工业, 2021, 49(7): 37-41. |
Li Z K, Xue F. Preparation and research of PEG/PVC/N-PCB composite shape-stabilized phase change materials[J]. China Plastics Industry, 2021, 49(7): 37-41. | |
4 | Wie J, Kim J. Thermal properties of surface-modified and cross-linked boron nitride/polyethylene glycol composite as phase change material[J]. Polymers, 2021, 13(3): 456. |
5 | Shi J B, Li M. Synthesis and characterization of polyethylene glycol/modified attapulgite form-stable composite phase change material for thermal energy storage[J]. Solar Energy, 2020, 205: 62-73. |
6 | 颜品萍, 罗富彬, 黄宝铨, 等. 导热增强聚乙二醇相变复合材料的制备及其性能[J]. 应用化学, 2020, 37(1): 46-53. |
Yan P P, Luo F B, Huang B Q, et al. Properties of thermal conductivity enhanced polyethylene glycol-based phase change composites[J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 46-53. | |
7 | 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究[J]. 物理学报, 2019, 68(10): 100502. |
Cai D, Li J, Jiao N X. Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials[J]. Acta Physica Sinica, 2019, 68(10): 100502. | |
8 | 孟新, 张焕芝, 赵梓名, 等. 三元脂肪酸/膨胀石墨复合相变材料的制备、包覆定形及热性能[J]. 高等学校化学学报, 2012, 33(3): 526-530. |
Meng X, Zhang H Z, Zhao Z M, et al. Preparation, encapsulation and thermal properties of fatty acid/expanded graphite composites as shape-stabilized phase change materials[J]. Chemical Journal of Chinese Universities, 2012, 33(3): 526-530. | |
9 | 南光花, 王建平, 王艳, 等. 包含聚苯胺的相变材料纳胶囊的制备及其性能[J]. 物理化学学报, 2014, 30(2): 338-344. |
Nan G H, Wang J P, Wang Y, et al. Preparation and properties of nanoencapsulated phase change materials containing polyaniline[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 338-344. | |
10 | 周建伟, 余冬梅, 赵蕴慧, 等. 有机烷烃相变材料及其微胶囊化[J]. 化学进展, 2011, 23(4): 695-703. |
Zhou J W, Yu D M, Zhao Y H, et al. Organic alkane phase change materials and their microencapsulation[J]. Progress in Chemistry, 2011, 23(4): 695-703. | |
11 | Li C C, Xie B S, Chen D L, et al. Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage[J]. Energy, 2019, 166: 246-255. |
12 | Feng D L, Zang Y Y, L i P, et al. Polyethylene glycol phase change material embedded in a hierarchical porous carbon with superior thermal storage capacity and excellent stability[J]. Composites Science and Technology, 2021, 210(2): 108832. |
13 | Samani F, Bahramian A R, Sharif A. Shape-stable phenolic/polyethylene glycol phase change material: kinetics study and improvements in thermal properties of nanocomposites[J].Iranian Polymer Journal, 2018, 27(7): 495-505. |
14 | Chen K, Wang C M, Wang T J, et al. Preparation and performances of form-stable polyethylene glycol/methylcellulose composite phase change materials[J].Journal of Polymer Research, 2020, 27(8): 1-8. |
15 | Fan L W, Fang X, Wang X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110: 163-172. |
16 | Jiang L, Lei Y, Liu Q F, et al. Polyethylene glycol based self-luminous phase change materials for both thermal and light energy storage[J]. Energy, 2020, 193: 116802. |
17 | Li B M, Shu D, Wang R F, et al. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable Energy, 2020, 145: 84-92. |
18 | Yang J, Zhang E W, Li X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98: 50-57. |
19 | Yang J, Tang L S, Bao R Y, et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability[J]. Solar Energy Materials and Solar Cells, 2018, 174: 56-64. |
20 | 倪凯, 潘虹, 沈勇, 等. 基分级多孔碳复合相变材料的制备与性能研究[J]. 功能材料, 2022, 53(1): 1175-1180. |
Ni K, Pan H, Shen Y, et al. Preparation and properties of lignin based graded porous carbon composite phase change materials[J]. Journal of Functional Materials, 2022, 53(1): 1175-1180. | |
21 | Wang J F, Xie H Q, Xin Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. |
22 | Tu J Y, Li H R, Zhang J J, et al. Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites[J]. Advanced Composites and Hybrid Materials, 2019, 2(3): 471-480. |
23 | Wu S Y, Zhu D S, Zhang X R, et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy & Fuels, 2010, 24(3): 1894-1898. |
24 | Gu X B, Peng L H, Liu P, et al. Enhanced thermal properties and lab-scale thermal performance of polyethylene glycol/modified halloysite nanotube form-stable phase change material cement panel[J]. Construction and Building Materials, 2022, 323(6): 126550. |
25 | Deng Y, Li J H, Qian T T, et al. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J]. Chemical Engineering Journal, 2016, 295: 427-435. |
26 | 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564. |
Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564. | |
27 | Tang B T, Cui J S, Wang Y M, et al. Facile synthesis and performances of PEG/SiO2 composite form-stable phase change materials[J]. Solar Energy, 2013, 97: 484-492. |
28 | 张正国, 邵刚, 方晓明. 石蜡/膨胀石墨复合相变储热材料的研究[J]. 太阳能学报, 2005, 26(5): 698-702. |
Zhang Z G, Shao G, Fang X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Acta Energiae Solaris Sinica, 2005, 26(5): 698-702. | |
29 | Yang J, Yu P, Tang L S, et al. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion[J]. Nanoscale, 2017, 9(45): 17704-17709. |
30 | Li J F, Wang Z L, Wen L G, et al. Highly elastic fibers made from hydrogen-bonded polymer complex[J]. ACS Macro Letters, 2016, 5(7): 814-818. |
31 | 李博鑫, 杨隽阁, 尹德忠, 等. 单分散聚合物微球稳定Pickering乳液法制备大粒径微胶囊相变材料[J]. 高等学校化学学报, 2020, 41(9): 2085-2089. |
Li B X, Yang J G, Yin D Z, et al. Preparation of large-sized microencapsulated phase change materials through Pickering emulsion stabilized by monodisperse polymer microspheres[J]. Chemical Journal of Chinese Universities, 2020, 41(9): 2085-2089. | |
32 | Zhang P X, Wang X W, Wang D, et al. Preparation and properties of photo-cured electrolyte based on poly(ethylene glycol) grafted acrylic resin[J]. Acta Polymerica Sinica, 2021, 52(1): 94-101. |
33 | 吴文昊, 黄心宇, 姚锐敏, 等. 煤基碳泡沫/聚氨酯相变复合材料的制备及储热性能[J]. 物理化学学报, 2017, 33(1): 255-261. |
Wu W H, Huang X Y, Yao R M, et al. Synthesis and properties of polyurethane/coal-derived carbon foam phase change composites for thermal energy storage[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 255-261. | |
34 | Zhang D Y, Li C C, Lin N Z, et al. Enhanced properties of mica-based composite phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2021, 42: 103106. |
35 | Qian T T, Zhu S K, Wang H L, et al. Comparative study of carbon nanoparticles and single-walled carbon nanotube for light-heat conversion and thermal conductivity enhancement of the multifunctional PEG/diatomite composite phase change material[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29698-29707. |
36 | 鄢冬茂, 蔡文蓉, 殷国强, 等. PEG/APS-SiO2/O-CNTs导热增强相变材料的制备及性能[J]. 精细化工, 2021, 38(4): 729-735. |
Yan D M, Cai W R, Yin G Q, et al. Preparation and properties of PEG/APS-SiO2/O-CNTs phase change materials with enhanced thermal conductivity[J]. Fine Chemicals, 2021, 38(4): 729-735. | |
37 | Fang H, Lin J L, Zhang L J, et al. Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning[J]. Carbohydrate Polymers, 2020, 249: 116836. |
38 | 仝仓, 李祥立, 端木琳. 聚乙二醇/二氧化硅/膨胀石墨相变储能材料的制备与性能研究[J]. 区域供热, 2018(3): 100-104. |
Tong C, Li X L, Duanmu L. Preparation and properties of polyethylene glycol/silica/expanded graphite phase change energy storage materials[J]. District Heating, 2018(3): 100-104. | |
39 | 付维贵, 索海涛, 林贵德, 等. PEG/PAM复合定形相变材料的制备与热性能[J]. 天津工业大学学报, 2018, 37(2): 55-61. |
Fu W G, Suo H T, Lin G D, et al. Synthesis and thermal performance of PEG/PAM shape-stabilized composite phase change materials[J]. Journal of Tianjin Polytechnic University, 2018, 37(2): 55-61. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[8] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[9] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[10] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[13] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[14] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[15] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||