CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5394-5404.DOI: 10.11949/0438-1157.20221222
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wenxiang LI1(), Junhe WANG1, Yijing HAO1, Leping ZHOU1,2()
Received:
2022-09-07
Revised:
2022-12-10
Online:
2023-01-17
Published:
2022-12-05
Contact:
Leping ZHOU
通讯作者:
周乐平
作者简介:
李文祥(1994—),男,硕士研究生,120202202060@ncepu.edu.cn
基金资助:
CLC Number:
Wenxiang LI, Junhe WANG, Yijing HAO, Leping ZHOU. Experimental study on the effect of initial quenching temperature on the boiling heat transfer characteristics of hydrophobic surfaces[J]. CIESC Journal, 2022, 73(12): 5394-5404.
李文祥, 王钧禾, 郝怡静, 周乐平. 淬火初温影响疏水表面沸腾传热特性的实验研究[J]. 化工学报, 2022, 73(12): 5394-5404.
Add to citation manager EndNote|Ris|BibTeX
1 | Dhir V K, Duffey R B, Catton I. Quenching studies on a zircaloy rod bundle[J]. Journal of Heat Transfer, 1981, 103(2): 293-299. |
2 | Jena A. Wettability of candidate accident tolerant fuel (ATF) cladding materials in LWR conditions[D]. Massachusetts: Massachusetts Institute of Technology, 2020. |
3 | Long S, Liang Y, Jiang Y, et al. Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel[J]. Materials Science and Engineering: A, 2016, 676: 38-47. |
4 | Ma J, He W, Liu Q. Strengthening a multilayered Zr/Ti composite by quenching at higher temperature[J]. Materials Science and Engineering: A, 2018, 737: 1-8. |
5 | Jahedi M, Moshfegh B. Experimental study of quenching process on a rotating hollow cylinder by one row of impinging jets[C]//9th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Iguazu Falls, Brazil, 2017. |
6 | Woodfield P L, Mozumder A K, Monde M. On the size of the boiling region in jet impingement quenching[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 460-465. |
7 | Mozumder A K, Monde M, Woodfield P L, et al. Maximum heat flux in relation to quenching of a high temperature surface with liquid jet impingement[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2877-2888. |
8 | Hwang G S, In W K, Lee C Y. Quenching experiments of vertical Inconel and zircaloy tubes in internal water flow[J]. Annals of Nuclear Energy, 2022, 167: 108798. |
9 | Lee Y P, Chen W J, Groeneveld D C. Rewetting of very hot vertical and horizontal channels by flooding[C]//International Heat Transfer Conference Digital Library. Begel House Inc., 1978, 5: 95-100. |
10 | Chung M K, Lee Y W, Cha J H. Experimental study of rewetting phenomena[J]. Nuclear Engineering and Technology, 1980, 12(1): 9-18. |
11 | Li C, Wang Z, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088. |
12 | Chu K H, Enright R, Wang E N. Structured surfaces for enhanced pool boiling heat transfer[J]. Applied Physics Letters, 2012, 100(24): 241603. |
13 | Ahn H S, Kim J M, Kim M H. Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2013, 60: 763-771. |
14 | 肖平, 侯峰, 刘京雷. 火焰喷涂型多孔表面制备及其池沸腾实验研究[J]. 化学工程, 2018, 46( 8): 28-32, 37. |
Xiao P, Hou F, Liu J L. Preparation and experimental study on pool boiling of flame-sprayed porous surface[J]. Chemical Engineering(China), 2018, 46( 8): 28-32, 37. | |
15 | Kim H, DeWitt G, McKrell T, et al. On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles[J]. International Journal of Multiphase Flow, 2009, 35(5): 427-438. |
16 | Kim H, Ahn H S, Kim M H. On the mechanism of pool boiling critical heat flux enhancement in nanofluids[J]. Journal of Heat Transfer, 2010, 132: 061501. |
17 | Zhang L, Yu Z, Li D, et al. Enhanced critical heat flux during quenching of extremely dilute aqueous colloidal suspensions with graphene oxide nanosheets[J]. Journal of Heat Transfer, 2013, 135: 054502. |
18 | 王洪亮, 夏虹, 张会勇, 等. 纳米流体对临界热通量强化影响池沸腾实验研究[J]. 应用科技, 2017(1): 82-86. |
Wang H L, Xia H, Zhang H Y, et al. Investigation of critical heat flux emhancement pool boiling experiment by using nanofluids [J]. Applied Science and Technology, 2017(1): 82-86. | |
19 | Taylor R A, Phelan P E. Pool boiling of nanofluids: comprehensive review of existing data and limited new data[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5339-5347. |
20 | Barber J, Brutin D, Tadrist L. A review on boiling heat transfer enhancement with nanofluids[J]. Nanoscale Research Letters, 2011, 6(1): 1-16. |
21 | Kim H. Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review[J]. Nanoscale Research Letters, 2011, 6(1): 1-18. |
22 | Seon Ahn H, Hwan Kim M. A review on critical heat flux enhancement with nanofluids and surface modification[J]. Journal of Heat Transfer, 2012, 134:024001. |
23 | Kim H, Truong B, Buongiorno J, et al. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena[J]. Applied Physics Letters, 2011, 98(8): 083121. |
24 | O'Hanley H, Coyle C, Buongiorno J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103(2): 024102. |
25 | Zhang C, Zhou W, Wang Q, et al. Comparison of static contact angle of various metal foams and porous copper fiber sintered sheet[J]. Applied Surface Science, 2013, 276: 377-382. |
26 | 赵鹏飞, 冀文涛, 赵二涛, 等. 不同润湿性表面池沸腾换热特性研究[J]. 中国科技论文, 2018, 13(11): 1211-1216. |
Zhao P F, Ji W T, Zhao E T, et al. Study on the pool boiling heat transfer of surfaces with different wettability[J]. China Sciencepaper, 2018, 13(11): 1211-1216. | |
27 | Li J Q, Mou L W, Zhang Y H, et al. An experimental study of the accelerated quenching rate and enhanced pool boiling heat transfer on rodlets with a superhydrophilic surface in subcooled water[J]. Experimental Thermal and Fluid Science, 2018, 92: 103-112. |
28 | Hendricks T J, Krishnan S, Choi C, et al. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3357-3365. |
29 | Bourdon B, Bertrand E, Di Marco P, et al. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces[J]. Advances in Colloid and Interface Science, 2015, 221: 34-40. |
30 | Fan L W, Li J Q, Li D Y, et al. Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic[J]. International Journal of Heat and Mass Transfer, 2014, 76: 81-89. |
31 | Betz A R, Xu J, Qiu H, et al. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?[J]. Applied Physics Letters, 2010, 97(14): 141909. |
32 | Može M, Zupančič M, Golobič I. Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology[J]. Applied Thermal Engineering, 2020, 169: 114938. |
33 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
34 | Carey V P. Liquid Vapor Phase Change Phenomena[M]. 2nd ed. New York: Taylor-Francis, 2008: 353-371. |
35 | Witte L C, Lienhard J H. On the existence of two‘transition' boiling curves[J]. International Journal of Heat and Mass Transfer, 1982, 25(6): 771-779. |
36 | Hu H, Xu C, Zhao Y, et al. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface[J]. International Journal of Heat and Mass Transfer, 2015, 80: 636-643. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||