CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1062-1072.DOI: 10.11949/0438-1157.20221426
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bingguo ZHU1(), Jixiang HE1, Jinliang XU2, Bin PENG1
Received:
2022-11-01
Revised:
2023-02-21
Online:
2023-04-19
Published:
2023-03-05
Contact:
Bingguo ZHU
通讯作者:
朱兵国
作者简介:
朱兵国(1988—),男,博士,讲师,zhubg@lut.edu.cn
基金资助:
CLC Number:
Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions[J]. CIESC Journal, 2023, 74(3): 1062-1072.
朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072.
15 | Wang J Y, Guan Z Q, Gurgencia H, et al. Numerical study on cooling heat transfer of turbulent supercritical CO2 in large horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1002-1019. |
16 | Xiang M R, Guo J F, Huai X L, et al. Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition[J]. The Journal of Supercritical Fluids, 2017, 130: 389-398. |
17 | 刘新新, 叶建, 徐肖肖, 等. 超临界CO2在水平螺旋管内的冷却换热特性[J]. 化工学报, 2016, 67(S2): 120-127. |
Liu X X, Ye J, Xu X X, et al. Heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube[J]. CIESC Journal, 2016, 67(S2): 120-127. | |
18 | Li C, Hao J H, Wang X C, et al. Dual-effect evaluation of heat transfer deterioration of supercritical carbon dioxide in variable cross-section horizontal tubes under heating conditions[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122103. |
19 | Duryodhan V S, Singh A, Singh S G, et al. Convective heat transfer in diverging and converging microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 80: 424-438. |
20 | Bai C, Qiu Y, Leng X L, et al. Diverging/converging small channel for condensation heat transfer enhancement under different gravity conditions[J]. International Communication in Heat and Mass Transfer, 2020, 116: 104714. |
21 | Kumar N, Basu D N. Role of buoyancy on the thermalhydraulic behavior of supercritical carbon dioxide flow through horizontal heated minichannel[J]. International Journal of Thermal Sciences, 2021, 168: 107051. |
22 | Wang H, Leungc L K H, Wang W, et al. A review on recent heat transfer studies to supercritical pressure water in channels[J]. Applied Thermal Engineering, 2018, 142: 573-596. |
23 | Dang C, Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide (Part 1): Experimental measurement[J]. International Journal of Refrigeration, 2004, 27: 736-747. |
24 | Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41: 2221-2225. |
25 | Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48: 1797-1807. |
1 | Goodarzi M, Gheibi A. Performance analysis of a modified trans-critical CO2 refrigeration cycle[J]. Applied Thermal Engineering, 2015, 75: 1118-1125. |
2 | 杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报, 2022, 43(9): 125-130. |
Yang J Z, Yang Z, Duan Y Y. Thermodynamic and economic analysis of solar power tower system based on S-CO2 cycle with different installed capacity[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 125-130. | |
3 | Cabeza L F, Gracia A, InésFernándezc A, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
4 | 白万金, 徐肖肖, 吴杨杨. 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4): 1244-1250. |
Bai W J, Xu X X, Wu Y Y. Heat transfer characteristics of supercritical CO2 at low mass flux in tube[J]. CIESC Journal, 2016, 67(4): 1244-1250. | |
5 | 相梦如, 郭江峰, 淮秀兰, 等. 超临界压力CO2水平管内冷却换热机理研究[J]. 工程热物理学报, 2017, 38(9): 1929-1934. |
Xiang M R, Guo J F, Huai X L, et al. A study on the cooling heat transfer mechanism for supercritical pressure CO2 in horizontal tube[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1929-1934. | |
6 | Liu Z B, He Y L, Yang Y F, et al. Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube[J]. Applied Thermal Engineering, 2014, 70: 307-315. |
7 | Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45: 5025-5034. |
8 | Liao S M, Zhao T S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124: 413-420. |
9 | Huai X L, Koyama S, Zhao T S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science, 2005, 60(12): 3337-3345. |
10 | Oh H, Son C. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes[J]. Experimental Thermal and Fluid Science, 2010, 34: 1230-1241. |
11 | Du Z X, Lin W S, Gu A Z. Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube[J]. Journal of Super-critical Fluids, 2010, 55: 116-121. |
12 | Wang J Y, Guan Z Q, Gurgencia H, et al. A computationally derived heat transfer correlation for in-tube cooling turbulent supercritical CO2 [J]. International Journal of Thermal Sciences, 2019, 138: 190-205. |
13 | Wang J Y, Guan Z Q, Gurgencia H, et al. Computational investigations of heat transfer to supercritical CO2 in a large horizontal tube[J]. Energy Conversion and Management, 2018, 157: 536-548. |
14 | Wang J Y, Li J S, Gurgencia H, et al. Computational investigations on convective flow and heat transfer of turbulent supercritical CO2 cooled in large inclined tubes[J]. Applied Thermal Engineering, 2019, 159: 113922. |
26 | Simeoni G G, Bryk T, Gorelli F A, et al. The Widom line as the cross-over between liquid-like and gas-like behavior in supercritical fluids[J]. Nature Physics, 2010, 6: 503-507. |
27 | Gallo P, Corradini D, Rovere M. Widom line and dynamical crossovers as routes to understand supercritical water[J]. Nature Communications, 2014, 5(1): 1-6. |
28 | Ma X J, Xu J L, Xie J. In-situ phase separation to improve phase change heat transfer performance[J]. Energy, 2021, 230: 120845. |
29 | Kadi K, Alnaimat F, Sherif S A. Recent advances in condensation heat transfer in mini and micro channels: a comprehensive review[J]. Applied Thermal Engineering, 2021, 197: 117412. |
30 | 何吉祥, 朱兵国, 彭斌, 等. 太阳能热发电中超临界压力CO2在渐扩变截面圆管内冷却传热强化机理[J]. 太阳能学报, 2023, DOI:10.19912/j.0254-0096.tynxb.2022-0672 . |
He J X, Zhu B G, Peng B, et al. Cooling heat transfer enhancement mechanism of supercritical pressure CO2 in diverging variable cross-section circular tube in solar thermal power generation[J]. Acta Energiae Solaris Sinica, 2023, DOI:10.19912/j.0254-0096.tynxb.2022-0672 . | |
31 | Liu G X, Huang Y P, Wang J F, et al. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110290. |
32 | Lv Y G, Wen Z X, Li Q, et al. Numerical investigation on thermal hydraulic performance of hybrid wavy channels in a supercritical CO2 precooler[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121891. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[3] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[4] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[5] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
[6] | Jianwei ZHANG, Weifeng GAO, Xin DONG, Ying FENG. Numerical study on vortex characteristics in submerged impinging stream reactor [J]. CIESC Journal, 2022, 73(8): 3553-3564. |
[7] | Weibin SHI, Shanshan LONG, Xiaogang YANG, Xinyue CAI. Bubble breakage, turbulence dispersion and mass transfer model considering the joint effects of bubble-induced turbulence and shear turbulence [J]. CIESC Journal, 2022, 73(6): 2573-2588. |
[8] | Yan LI, Ahui TIAN, Yi ZHOU. Characteristics of scalar transport and chemical reaction in reactive dual jets [J]. CIESC Journal, 2022, 73(5): 1947-1963. |
[9] | Senlin WANG, Zhaozhi LI, Yingjuan SHAO, Wenqi ZHONG. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube [J]. CIESC Journal, 2022, 73(3): 1072-1082. |
[10] | Jianwei ZHANG, Fengyuan AN, Xin DONG, Ying FENG. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet [J]. CIESC Journal, 2022, 73(2): 622-633. |
[11] | Zhimin LIN, Chongzhao WANG, Guozhi QIANG, Shushan LIU, Liangbi WANG. Analysis of flow and heat transfer characteristics of lubricating oil in circular tube with coaxial crossed vortex generators [J]. CIESC Journal, 2022, 73(11): 4957-4973. |
[12] | LI Fan, LU Gaofeng, MA Guangbai, ZHAI Xiaoqiang, YANG Shunfa. Numerical simulation and performance analysis of heat transfer enhancement in tube by longitudinal vortex [J]. CIESC Journal, 2021, 72(S1): 120-126. |
[13] | Jianguo YAN, Shumin ZHENG, Pengcheng GUO, Bo ZHANG, Zhenkai MAO. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network [J]. CIESC Journal, 2021, 72(9): 4649-4657. |
[14] | Peng JIANG, Jinbo JIANG, Xudong PENG, Xiangkai MENG, Yi MA. Influence of heat transfer model on temperature and pressure distribution and steady state performance of CO2 dry gas seal under near critical condition [J]. CIESC Journal, 2021, 72(8): 4239-4254. |
[15] | Ruqi YAN, Xuexing DING, Jie XU, Xianzhi HONG, Xin BAO. Flow field and steady performance of supercritical carbon dioxide dry gas seal based on turbulence model [J]. CIESC Journal, 2021, 72(8): 4292-4303. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 366
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 266
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||