CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4649-4657.DOI: 10.11949/0438-1157.20210156
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jianguo YAN1(),Shumin ZHENG1,Pengcheng GUO1(),Bo ZHANG2,Zhenkai MAO2
Received:
2021-01-25
Revised:
2021-07-08
Online:
2021-09-05
Published:
2021-09-05
Contact:
Pengcheng GUO
通讯作者:
郭鹏程
作者简介:
颜建国(1987—),男,博士,副教授,基金资助:
CLC Number:
Jianguo YAN, Shumin ZHENG, Pengcheng GUO, Bo ZHANG, Zhenkai MAO. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network[J]. CIESC Journal, 2021, 72(9): 4649-4657.
颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
Add to citation manager EndNote|Ris|BibTeX
实验参数 | 数值 |
---|---|
系统压力p/ MPa | 7.5,8.5,9.5 |
质量流速G/( kg/(m2?s)) | 1100,1600,2100 |
实验段热通量q/( kW/m2) | 120,340,560 |
进口温度Tin/℃ | 20~60 |
Table 1 Test conditions
实验参数 | 数值 |
---|---|
系统压力p/ MPa | 7.5,8.5,9.5 |
质量流速G/( kg/(m2?s)) | 1100,1600,2100 |
实验段热通量q/( kW/m2) | 120,340,560 |
进口温度Tin/℃ | 20~60 |
实验参数 | 不确定度/% |
---|---|
压力/ MPa | 0.14 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
质量流速/(kg/(m2?s)) | 0.75 |
热通量/(kW/m2) | 4.63 |
传热系数/(W/(m2·K)) | 5.20 |
Table 2 Parameter uncertainties
实验参数 | 不确定度/% |
---|---|
压力/ MPa | 0.14 |
流体温度/℃ | 0.5 |
壁面温度/℃ | 0.4 |
质量流速/(kg/(m2?s)) | 0.75 |
热通量/(kW/m2) | 4.63 |
传热系数/(W/(m2·K)) | 5.20 |
1 | Liang Y C, Bian X Y, Qian W W, et al. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine[J]. Energy Conversion and Management, 2019, 197: 111845. |
2 | Wu P, Ma Y D, Gao C T, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. |
3 | 徐进良, 刘超, 孙恩慧, 等. 超临界二氧化碳动力循环研究进展及展望[J]. 热力发电, 2020, 49(10): 1-10. |
Xu J L, Liu C, Sun E H, et al. Review and perspective of supercritical carbon dioxide power cycles[J]. Thermal Power Generation, 2020, 49(10): 1-10. | |
4 | Novales D, Erkoreka A, de la Peña V, et al. Sensitivity analysis of supercritical CO2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power[J]. Energy Conversion and Management, 2019, 182: 430-450. |
5 | Teng L, Xuan Y M. A novel solar receiver for supercritical CO2 Brayton cycle[J]. Energy Procedia, 2019, 158: 339-344. |
6 | Kim S G, Yu H, Moon J, et al. A concept design of supercritical CO2 cooled SMR operating at isolated microgrid region[J]. International Journal of Energy Research, 2017, 41(4): 512-525. |
7 | Oh B S, Ahn Y H, Yu H, et al. Safety evaluation of supercritical CO2 cooled micro modular reactor[J]. Annals of Nuclear Energy, 2017, 110: 1202-1216. |
8 | Chen Y, Ma G W, Wang H D, et al. Application of carbon dioxide as working fluid in geothermal development considering a complex fractured system[J]. Energy Conversion and Management, 2019, 180: 1055-1067. |
9 | Ruiz-Casanova E, Rubio-Maya C, Pacheco-Ibarra J J, et al. Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources[J]. Energy Conversion and Management, 2020, 216: 112978. |
10 | Chu W X, Bennett K, Cheng J, et al. A review of supercritical CO2 Brayton cycle using in renewable energy applications[J]. Renewable Energy and Sustainable Development, 2018, 4(1): 14. |
11 | Cabeza L F, de Gracia A, Fernández A I, et al. Supercritical CO2 as heat transfer fluid: a review[J]. Applied Thermal Engineering, 2017, 125: 799-810. |
12 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
13 | 吴新明, 朱兵国, 张良, 等. 圆管内超临界CO2的阻力特性[J]. 化工学报, 2018, 69(12): 5024-5033. |
Wu X M, Zhu B G, Zhang L, et al. Resistance characteristics of supercritical CO2 in circular tube[J]. CIESC Journal, 2018, 69(12): 5024-5033. | |
14 | 王乃心, 杨大章, 谢晶, 等. 超临界CO2对流换热特性试验研究进展[J]. 流体机械, 2020, 48(11): 73-79. |
Wang N X, Yang D Z, Xie J, et al. A review on experimental studies of convection heat transfer characteristic of supercritical CO2[J]. Fluid Machinery, 2020, 48(11): 73-79. | |
15 | Rao N T, Oumer A N, Jamaludin U K. State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels[J]. The Journal of Supercritical Fluids, 2016, 116: 132-147. |
16 | 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
Yan J G, Zhu F L, Guo P C, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787. | |
17 | Zhang S J, Xu X X, Liu C, et al. Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119074. |
18 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290, 1661. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290, 1661. | |
19 | Guo P C, Liu S C, Yan J G, et al. Experimental study on heat transfer of supercritical CO2 flowing in a mini tube under heating conditions[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119623. |
20 | Wang J Y, Guan Z Q, Gurgenci H, et al. A computationally derived heat transfer correlation for in-tube cooling turbulent supercritical CO2[J]. International Journal of Thermal Sciences, 2019, 138: 190-205. |
21 | Ma T, Chu W X, Xu X Y, et al. An experimental study on heat transfer between supercritical carbon dioxide and water near the pseudo-critical temperature in a double pipe heat exchanger[J]. International Journal of Heat and Mass Transfer, 2016, 93: 379-387. |
22 | Wang L, Pan Y C, Lee J D, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. |
23 | Dhanuskodi R, Kaliappan R, Suresh S, et al. Artificial neural networks model for predicting wall temperature of supercritical boilers[J]. Applied Thermal Engineering, 2015, 90: 749-753. |
24 | Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural networks for thermal analysis of heat exchangers - a review[J]. International Journal of Thermal Sciences, 2015, 90: 150-172. |
25 | Yang F B, Cho H, Zhang H G, et al. Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery[J]. Energy Conversion and Management, 2018, 164: 15-26. |
26 | Ma D L, Zhou T, Chen J, et al. Supercritical water heat transfer coefficient prediction analysis based on BP neural network[J]. Nuclear Engineering and Design, 2017, 320: 400-408. |
27 | Azizi S, Ahmadloo E. Prediction of heat transfer coefficient during condensation of R134a in inclined tubes using artificial neural network[J]. Applied Thermal Engineering, 2016, 106: 203-210. |
28 | Pesteei S M, Mehrabi M. Modeling of convection heat transfer of supercritical carbon dioxide in a vertical tube at low Reynolds numbers using artificial neural network[J]. International Communications in Heat and Mass Transfer, 2010, 37(7): 901-906. |
29 | Lei X L, Zhang J, Gou L T, et al. Experimental study on convection heat transfer of supercritical CO2 in small upward channels[J]. Energy, 2019, 176: 119-130. |
30 | 章聪, 江锦波, 彭旭东, 等. 近临界区CO2物性预测模型对比与修正[J]. 化工学报, 2019, 70(8): 3058-3070. |
Zhang C, Jiang J B, Peng X D, et al. Comparison and correction of CO2 properties model in critical region[J]. CIESC Journal, 2019, 70(8): 3058-3070. | |
31 | Coleman H W, Steele W G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 1995, 33(10): 1888-1896. |
32 | Zahlan H, Groeneveld D, Tavoularis S. Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures[J]. Nuclear Engineering and Design, 2015, 289: 92-107. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||