CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1082-1091.DOI: 10.11949/0438-1157.20221517
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jinfeng HE1(), Xiuzhen LI2, Jianyao KOU1, Tingjie TAO1, Can YU1, Huan LIU1, Yongyuan CHEN1, Haojian ZHAO1, Dahao JIANG1(), Xiaonian LI1
Received:
2022-11-22
Revised:
2023-02-15
Online:
2023-04-19
Published:
2023-03-05
Contact:
Dahao JIANG
何金峰1(), 李秀珍2, 寇建耀1, 陶庭杰1, 余灿1, 刘欢1, 陈永元1, 赵豪健1, 江大好1(), 李小年1
通讯作者:
江大好
作者简介:
何金峰(1997—),男,硕士研究生,944458893@qq.com
基金资助:
CLC Number:
Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts[J]. CIESC Journal, 2023, 74(3): 1082-1091.
何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091.
Add to citation manager EndNote|Ris|BibTeX
Calcination temperature/K | Specific surface area/(m2/g) | Pore volume/ (cm3/g) | Average pore size/nm |
---|---|---|---|
723 | 321.91 | 1.10 | 13.17 |
773 | 322.16 | 1.14 | 13.83 |
873 | 314.37 | 1.05 | 13.63 |
973 | 254.40 | 1.06 | 14.93 |
1073 | 269.11 | 0.85 | 11.82 |
1273 | 103.37 | 0.67 | 21.92 |
723① | 241.70 | 0.43 | 6.82 |
Table 1 Structural properties of OMA supports calcined at different temperatures
Calcination temperature/K | Specific surface area/(m2/g) | Pore volume/ (cm3/g) | Average pore size/nm |
---|---|---|---|
723 | 321.91 | 1.10 | 13.17 |
773 | 322.16 | 1.14 | 13.83 |
873 | 314.37 | 1.05 | 13.63 |
973 | 254.40 | 1.06 | 14.93 |
1073 | 269.11 | 0.85 | 11.82 |
1273 | 103.37 | 0.67 | 21.92 |
723① | 241.70 | 0.43 | 6.82 |
Catalysts | Acidity distribution/ (mmol/g) | Total acidity/ (mmol/g) | Basicity distribution/ (mmol/g) | Total basicity/ (mmol/g) | ||
---|---|---|---|---|---|---|
Weak | Strong | Weak | Strong | |||
Cu-La2O3/OMA(773) | 0.569 | 0.841 | 1.410 | 0.032 | 0.174 | 0.206 |
Cu-La2O3/OMA(973) | 0.381 | 1.374 | 1.755 | 0.095 | 0.066 | 0.161 |
Cu-La2O3/OMA(1273) | 0.115 | 0.380 | 0.495 | 0.059 | 0.135 | 0.194 |
Table 2 Acid-base properties of Cu-La2O3/OMA(x) catalysts
Catalysts | Acidity distribution/ (mmol/g) | Total acidity/ (mmol/g) | Basicity distribution/ (mmol/g) | Total basicity/ (mmol/g) | ||
---|---|---|---|---|---|---|
Weak | Strong | Weak | Strong | |||
Cu-La2O3/OMA(773) | 0.569 | 0.841 | 1.410 | 0.032 | 0.174 | 0.206 |
Cu-La2O3/OMA(973) | 0.381 | 1.374 | 1.755 | 0.095 | 0.066 | 0.161 |
Cu-La2O3/OMA(1273) | 0.115 | 0.380 | 0.495 | 0.059 | 0.135 | 0.194 |
Catalysts | Conversion/% | Selectivity/% | ST③/% | YT④/% | |||||
---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | Butyradehyde | Ethyl acetate | n-Butanol | C6—C8 alcohols① | Others② | ||||
Cu-La2O3/OMA(723) | 26.6 | 4.4 | 4.4 | 11.7 | 52.8 | 13.9 | 12.8 | 66.7 | 17.7 |
Cu-La2O3/OMA(773) | 30.8 | 2.3 | 4.4 | 10.4 | 54.8 | 15.5 | 12.6 | 70.3 | 21.7 |
Cu-La2O3/OMA(873) | 37.2 | 2.1 | 5.0 | 9.1 | 53.0 | 17.7 | 13.0 | 70.7 | 26.3 |
Cu-La2O3/OMA(973) | 55.5 | 2.7 | 5.3 | 6.5 | 46.4 | 25.9 | 13.2 | 72.3 | 40.1 |
Cu-La2O3/OMA(1073) | 53.8 | 1.9 | 4.9 | 11.2 | 44.9 | 18.3 | 18.8 | 63.2 | 34.0 |
Cu-La2O3/OMA(1273) | 38.7 | 3.7 | 11.4 | 24.5 | 34.8 | 4.3 | 21.4 | 39.1 | 15.1 |
Cu-La2O3/γ-Al2O3 | 42.2 | 2.9 | 8.0 | 19.4 | 44.3 | 5.8 | 19.6 | 50.1 | 21.1 |
Table 3 Catalytic performance of Cu-La2O3/OMA(x) catalysts for ethanol upgrading to higher alcohols
Catalysts | Conversion/% | Selectivity/% | ST③/% | YT④/% | |||||
---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | Butyradehyde | Ethyl acetate | n-Butanol | C6—C8 alcohols① | Others② | ||||
Cu-La2O3/OMA(723) | 26.6 | 4.4 | 4.4 | 11.7 | 52.8 | 13.9 | 12.8 | 66.7 | 17.7 |
Cu-La2O3/OMA(773) | 30.8 | 2.3 | 4.4 | 10.4 | 54.8 | 15.5 | 12.6 | 70.3 | 21.7 |
Cu-La2O3/OMA(873) | 37.2 | 2.1 | 5.0 | 9.1 | 53.0 | 17.7 | 13.0 | 70.7 | 26.3 |
Cu-La2O3/OMA(973) | 55.5 | 2.7 | 5.3 | 6.5 | 46.4 | 25.9 | 13.2 | 72.3 | 40.1 |
Cu-La2O3/OMA(1073) | 53.8 | 1.9 | 4.9 | 11.2 | 44.9 | 18.3 | 18.8 | 63.2 | 34.0 |
Cu-La2O3/OMA(1273) | 38.7 | 3.7 | 11.4 | 24.5 | 34.8 | 4.3 | 21.4 | 39.1 | 15.1 |
Cu-La2O3/γ-Al2O3 | 42.2 | 2.9 | 8.0 | 19.4 | 44.3 | 5.8 | 19.6 | 50.1 | 21.1 |
1 | Ribeiro B E. Beyond commonplace biofuels: social aspects of ethanol[J]. Energy Policy, 2013, 57: 355-362. |
2 | Britto Júnior R F, Martins C A. Emission analysis of a diesel engine operating in diesel-ethanol dual-fuel mode[J]. Fuel, 2015, 148: 191-201. |
3 | Nanthagopal K, Ashok B, Saravanan B, et al. An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel[J]. Energy Conversion and Management, 2018, 158: 70-80. |
4 | Atmanli A, Yilmaz N. A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine[J]. Fuel, 2018, 234: 161-169. |
5 | Kozlowski J T, Davis R J. Heterogeneous catalysts for the guerbet coupling of alcohols[J]. ACS Catalysis, 2013, 3(7): 1588-1600. |
6 | Jordison T L, Lira C T, Miller D J. Condensed-phase ethanol conversion to higher alcohols[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 10991-11000. |
7 | Wu X Y, Fang G Q, Tong Y Q, et al. Catalytic upgrading of ethanol to n-butanol: progress in catalyst development[J]. ChemSusChem, 2018, 11(1): 71-85. |
8 | Marcu I C, Tichit D, Fajula F, et al. Catalytic valorization of bioethanol over Cu-Mg-Al mixed oxide catalysts[J]. Catalysis Today, 2009, 147(3/4): 231-238. |
9 | Carvalho D L, de Avillez R R, Rodrigues M T, et al. Mg and Al mixed oxides and the synthesis of n-butanol from ethanol[J]. Applied Catalysis A: General, 2012, 415/416: 96-100. |
10 | Birky T W, Kozlowski J T, Davis R J. Isotopic transient analysis of the ethanol coupling reaction over magnesia[J]. Journal of Catalysis, 2013, 298: 130-137. |
11 | Yang C, Meng Z Y. Bimolecular condensation of ethanol to 1-butanol catalyzed by alkali cation zeolites[J]. Journal of Catalysis, 1993, 142(1): 37-44. |
12 | Ogo S, Onda A, Yanagisawa K. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts[J]. Applied Catalysis A: General, 2011, 402(1/2): 188-195. |
13 | Earley J H, Bourne R A, Watson M J, et al. Continuous catalytic upgrading of ethanol to n-butanol and >C4 products over Cu/CeO2 catalysts in supercritical CO2 [J]. Green Chemistry, 2015, 17(5): 3018-3025. |
14 | Jiang D H, Wu X Y, Mao J, et al. Continuous catalytic upgrading of ethanol to n-butanol over Cu-CeO2/AC catalysts[J]. Chemical Communications, 2016, 52(95): 13749-13752. |
15 | Jiang D H, Fang G Q, Tong Y Q, et al. Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol[J]. ACS Catalysis, 2018, 8(12): 11973-11978. |
16 | Riittonen T, Toukoniitty E, Madnani D K, et al. One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide—the effect of the active metal on the selectivity[J]. Catalysts, 2012, 2(1): 68-84. |
17 | Davda R R, Shabaker J W, Huber G W, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 171-186. |
18 | Pang J F, Zheng M Y, He L, et al. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts[J]. Journal of Catalysis, 2016, 344: 184-193. |
19 | Wang Z N, Yin M, Pang J F, et al. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol[J]. Journal of Energy Chemistry, 2022, 72: 306-317. |
20 | Yun Y S, Park D S, Yi J. Effect of nickel on catalytic behaviour of bimetallic Cu-Ni catalyst supported on mesoporous alumina for the hydrogenolysis of glycerol to 1,2-propanediol[J]. Catalysis Science & Technology, 2014, 4(9): 3191-3202. |
21 | Liu Q, Gao J, Gu F, et al. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation[J]. Journal of Catalysis, 2015, 326: 127-138. |
22 | Yuan Q, Yin A X, Luo C, et al. Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability[J]. Journal of the American Chemical Society, 2008, 130(11): 3465-3472. |
23 | Morris S M, Fulvio P F, Jaroniec M. Ordered mesoporous alumina-supported metal oxides[J]. Journal of the American Chemical Society, 2008, 130(45): 15210-15216. |
24 | Chein R, Yang Z W. Experimental study on dry reforming of biogas for syngas production over Ni-based catalysts[J]. ACS Omega, 2019, 4(25): 20911-20922. |
25 | Yan B, Gao Y, Wang B L, et al. Enhanced carbon dioxide oxidative dehydrogenation of 1-butene by iron-doped ordered mesoporous alumina[J]. ChemCatChem, 2017, 9(24): 4480-4483. |
26 | Aslam S, Subhan F, Yan Z F, et al. Dispersion of nickel nanoparticles in the cages of metal-organic framework: an efficient sorbent for adsorptive removal of thiophene[J]. Chemical Engineering Journal, 2017, 315: 469-480. |
27 | Zang Y H, Dong X F, Wang C X. One-pot synthesis of mesoporous Cu-SiO2-Al2O3 bifunctional catalysts for hydrogen production by dimethyl ether steam reforming[J]. Chemical Engineering Journal, 2017, 313: 1583-1592. |
28 | Gallo J M R, Bisio C, Gatti G, et al. Physicochemical characterization and surface acid properties of mesoporous [Al]-SBA-15 obtained by direct synthesis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(8): 5791-5800. |
29 | Pérez L L, Perdriau S, ten Brink G, et al. Stabilization of self-assembled alumina mesophases[J]. Chemistry of Materials, 2013, 25(6): 848-855. |
30 | He Y X, Zhang L M, An X, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism[J]. Science of the Total Environment, 2019, 688: 184-198. |
31 | Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species[J]. Catalysis Today, 1996, 27(3/4): 497-532. |
32 | Alphonse P, Faure B. Thermal stabilization of alumina modified by lanthanum[J]. Microporous and Mesoporous Materials, 2014, 196: 191-198. |
33 | Kumar P, With P, Srivastava V C, et al. Dimethyl carbonate synthesis from carbon dioxide using ceria-zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling[J]. RSC Advances, 2016, 6(111): 110235-110246. |
34 | Di Cosimo J I, Diez V K, Xu M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides[J]. Journal of Catalysis, 1998, 178(2): 499-510. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[3] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[4] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[5] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[6] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[7] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[8] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[9] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[10] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[11] | Xinshan KONG, Renxing HUANG, Lixia KANG, Yongzhong LIU. Optimal design of time-sharing heat storage system for modular production of methanol [J]. CIESC Journal, 2022, 73(2): 770-781. |
[12] | Xiongfei XU, Penglong LIU, Wei ZHANG, Xin XU, Kan ZHANG, Junwen WANG. Multivariate nonlinear regression model of methanol to aromatics by two-state fixed bed for product prediction [J]. CIESC Journal, 2022, 73(2): 838-846. |
[13] | Chang SU, Xiaobo FENG, Liyun ZHANG, Feng CHEN, Xiaoyan ZHAO, Jingpei CAO. Effect of tetraethylammonium hydroxide treatment on the structure of HMOR zeolite and its catalytic performance in the carbonylation of dimethyl ether [J]. CIESC Journal, 2022, 73(2): 712-721. |
[14] | Dong JI, Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies [J]. CIESC Journal, 2022, 73(10): 4565-4575. |
[15] | CHEN Chen, WANG Mingming, WANG Zhigang, TAN Xiaoyao. Hydrogen production by ethanol autothermal reforming using nickel-based asymmetric hollow fiber membranes [J]. CIESC Journal, 2021, 72(S1): 482-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||