CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3292-3308.DOI: 10.11949/0438-1157.20230465
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Linjing YUE1(), Yihan LIAO2, Yuan XUE1, Xuejie LI1, Yuxing LI1, Cuiwei LIU1()
Received:
2023-05-12
Revised:
2023-08-12
Online:
2023-10-18
Published:
2023-08-25
Contact:
Cuiwei LIU
岳林静1(), 廖艺涵2, 薛源1, 李雪洁1, 李玉星1, 刘翠伟1()
通讯作者:
刘翠伟
作者简介:
岳林静(1999—),女,硕士研究生,yuelinj@163.com
基金资助:
CLC Number:
Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates[J]. CIESC Journal, 2023, 74(8): 3292-3308.
岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308.
Add to citation manager EndNote|Ris|BibTeX
序号 | P1/psi | P2/psi | ΔP/psi | P2/P1 |
---|---|---|---|---|
1 | 2000 | 1000 | 1000 | 0.50 |
2 | 5000 | 2500 | 2500 | 0.50 |
3 | 5000 | 2050 | 2950 | 0.41 |
4 | 5000 | 1100 | 3900 | 0.22 |
5 | 5000 | 500 | 4500 | 0.10 |
6 | 5000 | 3750 | 1250 | 0.75 |
7 | 5000 | 2800 | 2200 | 0.56 |
8 | 5000 | 2500 | 2500 | 0.50 |
9 | 5000 | 2050 | 2950 | 0.41 |
10 | 5000 | 1100 | 3900 | 0.22 |
11 | 5000 | 500 | 4500 | 0.10 |
Table 1 Simulation conditions of an orifice plate with or without pits
序号 | P1/psi | P2/psi | ΔP/psi | P2/P1 |
---|---|---|---|---|
1 | 2000 | 1000 | 1000 | 0.50 |
2 | 5000 | 2500 | 2500 | 0.50 |
3 | 5000 | 2050 | 2950 | 0.41 |
4 | 5000 | 1100 | 3900 | 0.22 |
5 | 5000 | 500 | 4500 | 0.10 |
6 | 5000 | 3750 | 1250 | 0.75 |
7 | 5000 | 2800 | 2200 | 0.56 |
8 | 5000 | 2500 | 2500 | 0.50 |
9 | 5000 | 2050 | 2950 | 0.41 |
10 | 5000 | 1100 | 3900 | 0.22 |
11 | 5000 | 500 | 4500 | 0.10 |
P1/psi | P2/psi | ΔP/psi | P2/P1 | Q/gpm | Qs/gpm | Error/% |
---|---|---|---|---|---|---|
4993 | 345 | 4648 | 0.07 | 77 | 82.7 | 7.40 |
5003 | 506 | 4497 | 0.10 | 77.1 | 82.8 | 7.39 |
5000 | 1101 | 3899 | 0.22 | 77.1 | 82.7 | 7.26 |
5004 | 2052 | 2952 | 0.41 | 77 | 80.0 | 3.90 |
5006 | 2502 | 2504 | 0.50 | 75.2 | 73.8 | 1.86 |
5005 | 2813 | 2192 | 0.56 | 70.7 | 70.0 | 0.99 |
5006 | 3738 | 1268 | 0.75 | 54.2 | 52.5 | 3.14 |
Table 2 Experimental data of high-pressure water flow through orifice in Ref. [24] and data simulated by the model built in this paper
P1/psi | P2/psi | ΔP/psi | P2/P1 | Q/gpm | Qs/gpm | Error/% |
---|---|---|---|---|---|---|
4993 | 345 | 4648 | 0.07 | 77 | 82.7 | 7.40 |
5003 | 506 | 4497 | 0.10 | 77.1 | 82.8 | 7.39 |
5000 | 1101 | 3899 | 0.22 | 77.1 | 82.7 | 7.26 |
5004 | 2052 | 2952 | 0.41 | 77 | 80.0 | 3.90 |
5006 | 2502 | 2504 | 0.50 | 75.2 | 73.8 | 1.86 |
5005 | 2813 | 2192 | 0.56 | 70.7 | 70.0 | 0.99 |
5006 | 3738 | 1268 | 0.75 | 54.2 | 52.5 | 3.14 |
Fig.18 Velocity curves of monitoring points of an orifice plate with or without pits under transient simulation at pressure ratios of 0.75, 0.50 and 0.22
1 | Dular M, Griessler-Bulc T, Gutierrez-Aguirre I, et al. Use of hydrodynamic cavitation in (waste) water treatment[J]. Ultrasonics Sonochemistry, 2016, 29: 577-588. |
2 | Bethi B, Sonawane S H, Potoroko I, et al. Novel hybrid system based on hydrodynamic cavitation for treatment of dye waste water: a first report on bench scale study[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1874-1884. |
3 | Divekar P, Bondre A, Bhoir N, et al. Experimental investigation of hydrodynamic cavitation of single and multiple hole orifice for wastewater treatment[J]. Materials Today: Proceedings, 2023, 72: 1841-1846. |
4 | Lanfranchi A, Tassinato G, Valentino F, et al. Hydrodynamic cavitation pre-treatment of urban waste: integration with acidogenic fermentation, PHAs synthesis and anaerobic digestion processes[J]. Chemosphere, 2022, 301: 134624. |
5 | Mazzocchi E, Pachoud A J, Farhat M, et al. Signal analysis of an actively generated cavitation bubble in pressurized pipes for detection of wall stiffness drops[J]. Journal of Fluids and Structures, 2016, 65: 60-75. |
6 | 许健. 多相流阀门及相连管道空化/空蚀特性及预测方法研究[D]. 杭州: 浙江理工大学, 2017. |
Xu J. Study on cavitation/cavitation characteristics and prediction method of multiphase flow valves and connected pipelines[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. | |
7 | Zhang Q L, Hu Y G, Liu M S, et al. Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation[J]. Engineering Failure Analysis, 2021, 122: 105270. |
8 | Yin J Y, Zhang Y X, Zhu J J, et al. An experimental and numerical study on the dynamical behaviors of the rebound cavitation bubble near the solid wall[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121525. |
9 | Yang Y, Shan M L, Su N N, et al. Role of wall temperature on cavitation bubble collapse near a wall investigated using thermal lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2022, 134: 105988. |
10 | Li S, Zuo Z G, Li S C. Stochastic study of cavitation bubbles near boundary wall[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 487-491. |
11 | Rayleigh L. Ⅷ. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98. |
12 | Plesset M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3): 277-282. |
13 | Noltingk B E, Neppiras E A. Cavitation produced by ultrasonics[J]. Proceedings of the Physical Society Section B, 1950, 63(9): 674-685. |
14 | Washio S, Kikui S, Takahashi S. Nucleation and subsequent cavitation in a hydraulic oil poppet valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(4): 947-958. |
15 | Washio S, Takahashi S, Yoshimori S. Study on cavitation starting at the point of separation on a smooth wall in hydraulic oil flow[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(6): 619-630. |
16 | Washio S, Takahashi S, Uemura K, et al. Singular properties of flow separation as a real cause of cavitation inception[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(4): 667-678. |
17 | Liang J, Luo X H, Liu Y S, et al. A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves[J]. International Journal of Heat and Mass Transfer, 2016, 103: 684-700. |
18 | Le Q, Franc J P, Michel J M. Partial cavities: pressure pulse distribution around cavity closure[J]. Journal of Fluids Engineering, 1993, 115(2): 249-254. |
19 | McKenney E A, Brennen C E. On the dynamics and acoustics of cloud cavitation on an oscillating hydrofoil[C]//Proceedings of 19th Symposium on Naval Hydrodynamics.Washington D C: National Academy Press, 1994: 195-202. |
20 | Reisman G E, Wang Y C, Brennen C E. Observations of shock waves in cloud cavitation[J]. Journal of Fluid Mechanics, 1998, 355: 255-283. |
21 | Leroux J B, Coutier-Delgosha O, Astolfi J A. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil[J]. Physics of Fluids, 2005, 17(5): 052101-052120. |
22 | 陈广豪. 附着型非定常空化流体动力特性与机理研究[D]. 北京: 北京理工大学, 2016. |
Chen G H. Study on hydrodynamic characteristics and mechanism of attached unsteady cavitation[D]. Beijing: Beijing Institute of Technology, 2016. | |
23 | 陈广豪, 王国玉, 黄彪. 云状空化的非定常流体动力特性[J]. 船舶力学, 2016, 20(1/2): 1-9. |
Chen G H, Wang G Y, Huang B. Unsteady hydrodynamics of cloud cavitating flows in a convergent-divergent channel[J]. Journal of Ship Mechanics, 2016, 20(1/2): 1-9. | |
24 | Ebrahimi B, He G L, Tang Y J, et al. Characterization of high-pressure cavitating flow through a thick orifice plate in a pipe of constant cross section[J]. International Journal of Thermal Sciences, 2017, 114: 229-240. |
25 | 俞轲鑫, 尚群立, 吴欣. 节流孔板空化特性分析[J]. 中国机械工程, 2021, 32(3): 290-296. |
Yu K X, Shang Q L, Wu X. Analysis of cavitation characteristics for orifice plates[J]. China Mechanical Engineering, 2021, 32(3): 290-296. | |
26 | 陈艳宇, 尚群立, 吴欣, 等. 节流孔板非线性空化特征实验研究[J]. 高技术通讯, 2022, 32(6): 632-639. |
Chen Y Y, Shang Q L, Wu X, et al. Research on nonlinear cavitation of orifice plate blocked flow[J]. Chinese High Technology Letters, 2022, 32(6): 632-639. | |
27 | Jin Z J, Gao Z X, Li X J, et al. Cavitating flow through a micro-orifice[J]. Micromachines, 2019, 10(3): 191. |
28 | 赵志伟. 基于纯水介质的孔板空化数值模拟及实验研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. |
Zhao Z W. Numerical simulation and experimental study on cavitation of orifice plate based on pure water medium[D]. Harbin: Harbin University of Science and Technology, 2022. | |
29 | 侯进军. 孔板空化器内空化特性及效应研究[D]. 哈尔滨: 哈尔滨理工大学, 2021. |
Hou J J. Study on cavitation characteristics and effect in orifice cavitation device[D]. Harbin: Harbin University of Science and Technology, 2021. | |
30 | 韩桂华, 洪健, 侯进军, 等. 孔板通道结构参数对空化效应的影响[J]. 哈尔滨理工大学学报, 2022, 27(1): 108-114. |
Han G H, Hong J, Hou J J, et al. Influence of orifice channel structure parameters on cavitation effect[J]. Journal of Harbin University of Science and Technology, 2022, 27(1): 108-114. | |
31 | 韩桂华, 葛宁, 侯进军, 等. 孔板空化器内流体空化特性研究[J]. 哈尔滨理工大学学报, 2022, 27(3): 22-29. |
Han G H, Ge N, Hou J J, et al. Cavitation characteristics of fluid in orifice cavitator[J]. Journal of Harbin University of Science and Technology, 2022, 27(3): 22-29. | |
32 | Zwart P J, Gerber A G, Belamri T. A two-phase flow model for predicting cavitation dynamics[C]//Fifth International Conference on Multiphase Flow. Yokohama, 2004. |
33 | Schnerr G H, Sauer J. Physical and numerical modeling of unsteady cavitation dynamics[C]//Fourth International Conference on Multiphase Flow. New Orleans, 2001. |
34 | Gogate P R. Cavitation: an auxiliary technique in wastewater treatment schemes[J]. Advances in Environmental Research, 2002, 6(3): 335-358. |
35 | Jyoti K K, Pandit A B. Water disinfection by acoustic and hydrodynamic cavitation[J]. Biochemical Engineering Journal, 2001, 7(3): 201-212. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[8] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[9] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[10] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[11] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[12] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[13] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[14] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[15] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||