CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3572-3583.DOI: 10.11949/0438-1157.20230500
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Wenjie XU1(), Xianfeng JIA2, Jitong WANG1, Wenming QIAO1(), Licheng LING1, Renping WANG3, Zijian YU3, Yinxu ZHANG3
Received:
2023-05-23
Revised:
2023-07-23
Online:
2023-10-18
Published:
2023-08-25
Contact:
Wenming QIAO
徐文杰1(), 贾献峰2, 王际童1, 乔文明1(), 凌立成1, 王任平3, 余子舰3, 张寅旭3
通讯作者:
乔文明
作者简介:
徐文杰(1997— ),男,硕士研究生,xwjecust@163.com
基金资助:
CLC Number:
Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel[J]. CIESC Journal, 2023, 74(8): 3572-3583.
徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583.
Add to citation manager EndNote|Ris|BibTeX
Samples | Volume shrinkage/% | Density/(g/cm3) |
---|---|---|
Si/PR-0 | 3.7 | 0.170 |
Si/PR-25 | 4.2 | 0.187 |
Si/PR-50 | 7.9 | 0.242 |
Si/PR-75 | 8.6 | 0.293 |
Si/PR-100 | 9.6 | 0.327 |
Table 1 Volume shrinkage and density of representative Si/PR hybrid aerogel samples
Samples | Volume shrinkage/% | Density/(g/cm3) |
---|---|---|
Si/PR-0 | 3.7 | 0.170 |
Si/PR-25 | 4.2 | 0.187 |
Si/PR-50 | 7.9 | 0.242 |
Si/PR-75 | 8.6 | 0.293 |
Si/PR-100 | 9.6 | 0.327 |
Samples | SBET/ (m2/g) | Smeso/(m2/g) | Vtotal/(cm3/g) | Vmic/(cm3/g) | Vmeso/(cm3/g) | Porosity/% |
---|---|---|---|---|---|---|
Si/PR-0 | 12.56 | 10.28 | 0.03 | 0 | 0.03 | 99.49 |
Si/PR-25 | 48.63 | 27.93 | 0.10 | 0 | 0.10 | 98.13 |
Si/PR-50 | 69.72 | 49.43 | 0.19 | 0 | 0.18 | 95.40 |
Si/PR-75 | 94.34 | 75.44 | 0.27 | 0 | 0.26 | 92.09 |
Si/PR-100 | 127.47 | 81.20 | 0.30 | 0.01 | 0.29 | 90.19 |
Table 2 Textural characteristics of Si/PR hybrid aerogel sample
Samples | SBET/ (m2/g) | Smeso/(m2/g) | Vtotal/(cm3/g) | Vmic/(cm3/g) | Vmeso/(cm3/g) | Porosity/% |
---|---|---|---|---|---|---|
Si/PR-0 | 12.56 | 10.28 | 0.03 | 0 | 0.03 | 99.49 |
Si/PR-25 | 48.63 | 27.93 | 0.10 | 0 | 0.10 | 98.13 |
Si/PR-50 | 69.72 | 49.43 | 0.19 | 0 | 0.18 | 95.40 |
Si/PR-75 | 94.34 | 75.44 | 0.27 | 0 | 0.26 | 92.09 |
Si/PR-100 | 127.47 | 81.20 | 0.30 | 0.01 | 0.29 | 90.19 |
1 | Lee J H, Park S J. Recent advances in preparations and applications of carbon aerogels: a review[J]. Carbon, 2020, 163: 1-18. |
2 | Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels[J]. Angewandte Chemie, 2018, 57(17): 4538-4542. |
3 | Wu K D, Dong W, Pan Y K, et al. Lightweight and flexible phenolic aerogels with three-dimensional foam reinforcement for acoustic and thermal insulation[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1241-1249. |
4 | Wu K D, Zhou Q, Cao J X, et al. Ultrahigh-strength carbon aerogels for high temperature thermal insulation[J]. Journal of Colloid and Interface Science, 2022, 609: 667-675. |
5 | Wilson S M W, Al-Enzi F, Gabriel V A, et al. Effect of pore size and heterogeneous surface on the adsorption of CO2, N2, O2, and Ar on carbon aerogel, RF aerogel, and activated carbons[J]. Microporous and Mesoporous Materials, 2021, 322: 111089. |
6 | Hasegawa G, Kanamori K, Kiyomura T, et al. Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors[J]. Chemistry of Materials, 2016, 28(11): 3944-3950. |
7 | Song W D, Jia X F, Ma C, et al. Facile fabrication of lightweight carbon fiber/phenolic ablator with improved flexibility via natural rubber modification[J]. Composites Communications, 2022, 31: 101119. |
8 | Jia X F, Song W D, Chen W, et al. Facile fabrication of lightweight mullite fiber/phenolic ablator with low thermal conductivity via ambient pressure impregnation[J]. Ceramics International, 2021, 47(19): 28032-28036. |
9 | Cheng H M, Fan Z H, Hong C Q, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A Applied Science and Manufacturing, 2021, 143: 106313. |
10 | Jia X F, Dai B W, Zhu Z X, et al. Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying[J]. Carbon, 2016, 108: 551-560. |
11 | Seraji M M, Sameri G, Davarpanah J, et al. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels[J]. Journal of Colloid and Interface Science, 2017, 493: 103-110. |
12 | Li F J, Xie L, Sun G H, et al. Regulating pore structure of carbon aerogels by graphene oxide as ‘shape-directing’ agent[J]. Microporous and Mesoporous Materials, 2017, 240: 145-148. |
13 | Tannert R, Schwan M, Ratke L. Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels by means of a pH-controlled sol-gel process[J]. The Journal of Supercritical Fluids, 2015, 106: 57-61. |
14 | Schwan M, Ratke L. Flexibilisation of resorcinol-formaldehyde aerogels[J]. Journal of Materials Chemistry A, 2013, 1(43): 13462-13468. |
15 | Wu C, Huang H, Jin X Y, et al. Water-assisted synthesis of phenolic aerogel with superior compression and thermal insulation performance enabled by thick-united nano-structure[J]. Chemical Engineering Journal, 2023, 464: 142805. |
16 | Huang H, Hong C Q, Jin X Y, et al. Facile fabrication of superflexible and thermal insulating phenolic aerogels backboned by silicone networks[J]. Composites Part A: Applied Science and Manufacturing, 2023, 164: 107270. |
17 | Yu Z L, Wu Z Y, Xin S, et al. General and straightforward synthetic route to phenolic resin gels templated by chitosan networks[J]. Chemistry of Materials, 2014, 26(24): 6915-6918. |
18 | Hasegawa G, Shimizu T, Kanamori K, et al. Highly flexible hybrid polymer aerogels and xerogels based on resorcinol-formaldehyde with enhanced elastic stiffness and recoverability: insights into the origin of their mechanical properties[J]. Chemistry of Materials, 2017, 29(5): 2122-2134. |
19 | Wang L, Wang J L, Zheng L H, et al. Superelastic, anticorrosive, and flame-resistant nitrogen-containing resorcinol formaldehyde/graphene oxide composite aerogels[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10873-10879. |
20 | Hayase G. Fabrication of boehmite nanofiber internally-reinforced resorcinol-formaldehyde macroporous monoliths for heat/flame protection[J]. ACS Applied Nano Materials, 2018, 1(11): 5989-5993. |
21 | Shahzamani M, Bagheri R, Bahramian A R, et al. Preparation and characterization of hybrid aerogels from novolac and hydroxyl-terminated polybutadiene[J]. Journal of Materials Science, 2016, 51(17): 7861-7873. |
22 | 师建军, 孔磊, 左小彪, 等. 酚醛/SiO2双体系凝胶网络结构杂化气凝胶的制备与性能[J]. 高分子学报, 2018(10): 1307-1314. |
Shi J J, Kong L, Zuo X B, et al. Preparation of PR/SiO2 hybrid phenolic aerogel with bi-component gel networks[J]. Acta Polymerica Sinica, 2018 (10): 1307-1314. | |
23 | Wang C H, Cheng H M, Hong C Q, et al. Lightweight chopped carbon fibre reinforced silica-phenolic resin aerogel nanocomposite: facile preparation, properties and application to thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 81-90. |
24 | Li S, Han Y, Chen F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016, 124: 68-76. |
25 | Li S, Li H, Li Z, et al. Polysiloxane modified phenolic resin with co-continuous structure[J]. Polymer, 2017, 120: 217-222. |
26 | Chen D J, Gao H Y, Jin Z K, et al. Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: effects of acid catalyst and its excellent flexibility[J]. ACS Applied Nano Materials, 2018, 1(2): 933-939. |
27 | Chen D J, Gao H Y, Liu P P, et al. Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents[J]. RSC Advances, 2019, 9(15): 8664-8671. |
28 | He H, Geng L Y, Liu F, et al. Facile preparation of a phenolic aerogel with excellent flexibility for thermal insulation[J]. European Polymer Journal, 2022, 163: 110905. |
29 | Yin R Y, Cheng H M, Hong C Q, et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 500-510. |
30 | Zhan H J, Wu K J, Hu Y L, et al. Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation[J]. Chem, 2019, 5(7): 1871-1882. |
31 | Yun S, Luo H J, Gao Y F. Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity[J]. Journal of Materials Chemistry A, 2014, 2(35): 14542-14549. |
32 | Zhao S Y, Zhang Z, Sèbe G, et al. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization[J]. Advanced Functional Materials, 2015, 25(15): 2326-2334. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[3] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[4] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[5] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[6] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[7] | Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999. |
[8] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
[9] | Shuai WANG, Fukai YANG, Xinyu XU. Preparation and characterization of flame retardant bio-based polyols polyurethane foam [J]. CIESC Journal, 2023, 74(3): 1399-1408. |
[10] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[11] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[12] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[13] | Shaojie ZHENG, Jianbin WANG, Jijiang HU, Bo-Geng LI, Wenbo YUAN, Zong WANG, Zhen YAO. Regulation of structure and mechanical properties of poly(propylene-butene) alloys by monomer composition switching [J]. CIESC Journal, 2023, 74(2): 904-915. |
[14] | Yajing ZHAO, Jijiang HU, Suyun JIE, Bo-Geng LI. Modification of unsaturated polyester resin by HTPB: effect of introducing method of the rubber [J]. CIESC Journal, 2023, 74(2): 883-892. |
[15] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||